比较两个双精度浮点数或两个浮点数最有效的方法是什么?

简单地这样做是不正确的:

bool CompareDoubles1 (double A, double B)
{
   return A == B;
}

比如:

bool CompareDoubles2 (double A, double B) 
{
   diff = A - B;
   return (diff < EPSILON) && (-diff < EPSILON);
}

似乎是浪费加工。

有人知道更聪明的浮点比较器吗?


当前回答

我对任何涉及浮点减法的答案都非常谨慎(例如,fabs(a-b) < epsilon)。首先,浮点数在更大的量级上变得更稀疏,在足够大的量级上,当间隔大于时,您可能只需要做a == b。其次,减去两个非常接近的浮点数(因为您正在寻找接近相等的浮点数)正是您得到灾难性抵消的方式。

虽然不能移植,但我认为grom的答案在避免这些问题方面做得最好。

其他回答

在数值软件中,确实有这样的情况,你需要检查两个浮点数是否完全相等。我就一个类似的问题发表了这篇文章

https://stackoverflow.com/a/10973098/1447411

所以你不能说“CompareDoubles1”是错误的。

我的方法也许不正确,但很有用

将两个浮点数都转换为字符串,然后进行字符串比较

bool IsFlaotEqual(float a, float b, int decimal)
{
    TCHAR form[50] = _T("");
    _stprintf(form, _T("%%.%df"), decimal);


    TCHAR a1[30] = _T(""), a2[30] = _T("");
    _stprintf(a1, form, a);
    _stprintf(a2, form, b);

    if( _tcscmp(a1, a2) == 0 )
        return true;

    return false;

}

也可以做到操作人员超载

Why not perform bitwise XOR? Two floating point numbers are equal if their corresponding bits are equal. I think, the decision to place the exponent bits before mantissa was made to speed up comparison of two floats. I think, many answers here are missing the point of epsilon comparison. Epsilon value only depends on to what precision floating point numbers are compared. For example, after doing some arithmetic with floats you get two numbers: 2.5642943554342 and 2.5642943554345. They are not equal, but for the solution only 3 decimal digits matter so then they are equal: 2.564 and 2.564. In this case you choose epsilon equal to 0.001. Epsilon comparison is also possible with bitwise XOR. Correct me if I am wrong.

General-purpose comparison of floating-point numbers is generally meaningless. How to compare really depends on a problem at hand. In many problems, numbers are sufficiently discretized to allow comparing them within a given tolerance. Unfortunately, there are just as many problems, where such trick doesn't really work. For one example, consider working with a Heaviside (step) function of a number in question (digital stock options come to mind) when your observations are very close to the barrier. Performing tolerance-based comparison wouldn't do much good, as it would effectively shift the issue from the original barrier to two new ones. Again, there is no general-purpose solution for such problems and the particular solution might require going as far as changing the numerical method in order to achieve stability.

我的课程是基于之前发布的答案。非常类似于谷歌的代码,但我使用了一个偏差,将所有NaN值推到0xFF000000以上。这样可以更快地检查NaN。

这段代码是为了演示概念,而不是通用的解决方案。谷歌的代码已经展示了如何计算所有平台特定的值,我不想复制所有这些。我对这段代码做了有限的测试。

typedef unsigned int   U32;
//  Float           Memory          Bias (unsigned)
//  -----           ------          ---------------
//   NaN            0xFFFFFFFF      0xFF800001
//   NaN            0xFF800001      0xFFFFFFFF
//  -Infinity       0xFF800000      0x00000000 ---
//  -3.40282e+038   0xFF7FFFFF      0x00000001    |
//  -1.40130e-045   0x80000001      0x7F7FFFFF    |
//  -0.0            0x80000000      0x7F800000    |--- Valid <= 0xFF000000.
//   0.0            0x00000000      0x7F800000    |    NaN > 0xFF000000
//   1.40130e-045   0x00000001      0x7F800001    |
//   3.40282e+038   0x7F7FFFFF      0xFEFFFFFF    |
//   Infinity       0x7F800000      0xFF000000 ---
//   NaN            0x7F800001      0xFF000001
//   NaN            0x7FFFFFFF      0xFF7FFFFF
//
//   Either value of NaN returns false.
//   -Infinity and +Infinity are not "close".
//   -0 and +0 are equal.
//
class CompareFloat{
public:
    union{
        float     m_f32;
        U32       m_u32;
    };
    static bool   CompareFloat::IsClose( float A, float B, U32 unitsDelta = 4 )
                  {
                      U32    a = CompareFloat::GetBiased( A );
                      U32    b = CompareFloat::GetBiased( B );

                      if ( (a > 0xFF000000) || (b > 0xFF000000) )
                      {
                          return( false );
                      }
                      return( (static_cast<U32>(abs( a - b ))) < unitsDelta );
                  }
    protected:
    static U32    CompareFloat::GetBiased( float f )
                  {
                      U32    r = ((CompareFloat*)&f)->m_u32;

                      if ( r & 0x80000000 )
                      {
                          return( ~r - 0x007FFFFF );
                      }
                      return( r + 0x7F800000 );
                  }
};