假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?

是否可以只使用调用堆栈作为辅助存储?


当前回答

下面是简短的Scala解决方案:

  def bfs(nodes: List[Node]): List[Node] = {
    if (nodes.nonEmpty) {
      nodes ++ bfs(nodes.flatMap(_.children))
    } else {
      List.empty
    }
  }

使用返回值作为累加器的想法是很适合的。 可以在其他语言中以类似的方式实现,只需确保您的递归函数处理的节点列表。

测试代码清单(使用@marco测试树):

import org.scalatest.FlatSpec

import scala.collection.mutable

class Node(val value: Int) {

  private val _children: mutable.ArrayBuffer[Node] = mutable.ArrayBuffer.empty

  def add(child: Node): Unit = _children += child

  def children = _children.toList

  override def toString: String = s"$value"
}

class BfsTestScala extends FlatSpec {

  //            1
  //          / | \
  //        2   3   4
  //      / |       | \
  //    5   6       7  8
  //  / |           | \
  // 9  10         11  12
  def tree(): Node = {
    val root = new Node(1)
    root.add(new Node(2))
    root.add(new Node(3))
    root.add(new Node(4))
    root.children(0).add(new Node(5))
    root.children(0).add(new Node(6))
    root.children(2).add(new Node(7))
    root.children(2).add(new Node(8))
    root.children(0).children(0).add(new Node(9))
    root.children(0).children(0).add(new Node(10))
    root.children(2).children(0).add(new Node(11))
    root.children(2).children(0).add(new Node(12))
    root
  }

  def bfs(nodes: List[Node]): List[Node] = {
    if (nodes.nonEmpty) {
      nodes ++ bfs(nodes.flatMap(_.children))
    } else {
      List.empty
    }
  }

  "BFS" should "work" in {
    println(bfs(List(tree())))
  }
}

输出:

List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

其他回答

以下是我的完全递归实现的双向图的广度优先搜索的代码,而不使用循环和队列。

public class Graph { public int V; public LinkedList<Integer> adj[]; Graph(int v) { V = v; adj = new LinkedList[v]; for (int i=0; i<v; ++i) adj[i] = new LinkedList<>(); } void addEdge(int v,int w) { adj[v].add(w); adj[w].add(v); } public LinkedList<Integer> getAdjVerted(int vertex) { return adj[vertex]; } public String toString() { String s = ""; for (int i=0;i<adj.length;i++) { s = s +"\n"+i +"-->"+ adj[i] ; } return s; } } //BFS IMPLEMENTATION public static void recursiveBFS(Graph graph, int vertex,boolean visited[], boolean isAdjPrinted[]) { if (!visited[vertex]) { System.out.print(vertex +" "); visited[vertex] = true; } if(!isAdjPrinted[vertex]) { isAdjPrinted[vertex] = true; List<Integer> adjList = graph.getAdjVerted(vertex); printAdjecent(graph, adjList, visited, 0,isAdjPrinted); } } public static void recursiveBFS(Graph graph, List<Integer> vertexList, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < vertexList.size()) { recursiveBFS(graph, vertexList.get(i), visited, isAdjPrinted); recursiveBFS(graph, vertexList, visited, i+1, isAdjPrinted); } } public static void printAdjecent(Graph graph, List<Integer> list, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < list.size()) { if (!visited[list.get(i)]) { System.out.print(list.get(i)+" "); visited[list.get(i)] = true; } printAdjecent(graph, list, visited, i+1, isAdjPrinted); } else { recursiveBFS(graph, list, visited, 0, isAdjPrinted); } }

下面是简短的Scala解决方案:

  def bfs(nodes: List[Node]): List[Node] = {
    if (nodes.nonEmpty) {
      nodes ++ bfs(nodes.flatMap(_.children))
    } else {
      List.empty
    }
  }

使用返回值作为累加器的想法是很适合的。 可以在其他语言中以类似的方式实现,只需确保您的递归函数处理的节点列表。

测试代码清单(使用@marco测试树):

import org.scalatest.FlatSpec

import scala.collection.mutable

class Node(val value: Int) {

  private val _children: mutable.ArrayBuffer[Node] = mutable.ArrayBuffer.empty

  def add(child: Node): Unit = _children += child

  def children = _children.toList

  override def toString: String = s"$value"
}

class BfsTestScala extends FlatSpec {

  //            1
  //          / | \
  //        2   3   4
  //      / |       | \
  //    5   6       7  8
  //  / |           | \
  // 9  10         11  12
  def tree(): Node = {
    val root = new Node(1)
    root.add(new Node(2))
    root.add(new Node(3))
    root.add(new Node(4))
    root.children(0).add(new Node(5))
    root.children(0).add(new Node(6))
    root.children(2).add(new Node(7))
    root.children(2).add(new Node(8))
    root.children(0).children(0).add(new Node(9))
    root.children(0).children(0).add(new Node(10))
    root.children(2).children(0).add(new Node(11))
    root.children(2).children(0).add(new Node(12))
    root
  }

  def bfs(nodes: List[Node]): List[Node] = {
    if (nodes.nonEmpty) {
      nodes ++ bfs(nodes.flatMap(_.children))
    } else {
      List.empty
    }
  }

  "BFS" should "work" in {
    println(bfs(List(tree())))
  }
}

输出:

List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

Here is a JavaScript Implementation that fakes Breadth First Traversal with Depth First recursion. I'm storing the node values at each depth inside an array, inside of a hash. If a level already exists(we have a collision), so we just push to the array at that level. You could use an array instead of a JavaScript object as well since our levels are numeric and can serve as array indices. You can return nodes, values, convert to a Linked List, or whatever you want. I'm just returning values for the sake of simplicity.

BinarySearchTree.prototype.breadthFirstRec = function() {

    var levels = {};

    var traverse = function(current, depth) {
        if (!current) return null;
        if (!levels[depth]) levels[depth] = [current.value];
        else levels[depth].push(current.value);
        traverse(current.left, depth + 1);
        traverse(current.right, depth + 1);
    };

    traverse(this.root, 0);
    return levels;
};


var bst = new BinarySearchTree();
bst.add(20, 22, 8, 4, 12, 10, 14, 24);
console.log('Recursive Breadth First: ', bst.breadthFirstRec());
/*Recursive Breadth First:  
{ '0': [ 20 ],
  '1': [ 8, 22 ],
  '2': [ 4, 12, 24 ],
  '3': [ 10, 14 ] } */

下面是一个使用迭代方法的实际广度优先遍历的示例。

BinarySearchTree.prototype.breadthFirst = function() {

    var result = '',
        queue = [],
        current = this.root;

    if (!current) return null;
    queue.push(current);

    while (current = queue.shift()) {
        result += current.value + ' ';
        current.left && queue.push(current.left);
        current.right && queue.push(current.right);
    }
    return result;
};

console.log('Breadth First: ', bst.breadthFirst());
//Breadth First:  20 8 22 4 12 24 10 14

下面是递归BFS的Scala 2.11.4实现。为了简洁起见,我牺牲了尾部调用优化,但是TCOd版本非常相似。参见@snv的帖子。

import scala.collection.immutable.Queue

object RecursiveBfs {
  def bfs[A](tree: Tree[A], target: A): Boolean = {
    bfs(Queue(tree), target)
  }

  private def bfs[A](forest: Queue[Tree[A]], target: A): Boolean = {
    forest.dequeueOption exists {
      case (E, tail) => bfs(tail, target)
      case (Node(value, _, _), _) if value == target => true
      case (Node(_, l, r), tail) => bfs(tail.enqueue(List(l, r)), target)
    }
  }

  sealed trait Tree[+A]
  case class Node[+A](data: A, left: Tree[A], right: Tree[A]) extends Tree[A]
  case object E extends Tree[Nothing]
}

下面的方法使用DFS算法来获取特定深度的所有节点——这与对该级别进行BFS相同。如果您找到树的深度,并对所有级别执行此操作,结果将与BFS相同。

public void PrintLevelNodes(Tree root, int level) {
    if (root != null) {
        if (level == 0) {
            Console.Write(root.Data);
            return;
        }
        PrintLevelNodes(root.Left, level - 1);
        PrintLevelNodes(root.Right, level - 1);
    }
}

for (int i = 0; i < depth; i++) {
    PrintLevelNodes(root, i);
}

找到树的深度是小菜一碟:

public int MaxDepth(Tree root) {
    if (root == null) {
        return 0;
    } else {
        return Math.Max(MaxDepth(root.Left), MaxDepth(root.Right)) + 1;
    }
}