假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
当前回答
下面是简短的Scala解决方案:
def bfs(nodes: List[Node]): List[Node] = {
if (nodes.nonEmpty) {
nodes ++ bfs(nodes.flatMap(_.children))
} else {
List.empty
}
}
使用返回值作为累加器的想法是很适合的。 可以在其他语言中以类似的方式实现,只需确保您的递归函数处理的节点列表。
测试代码清单(使用@marco测试树):
import org.scalatest.FlatSpec
import scala.collection.mutable
class Node(val value: Int) {
private val _children: mutable.ArrayBuffer[Node] = mutable.ArrayBuffer.empty
def add(child: Node): Unit = _children += child
def children = _children.toList
override def toString: String = s"$value"
}
class BfsTestScala extends FlatSpec {
// 1
// / | \
// 2 3 4
// / | | \
// 5 6 7 8
// / | | \
// 9 10 11 12
def tree(): Node = {
val root = new Node(1)
root.add(new Node(2))
root.add(new Node(3))
root.add(new Node(4))
root.children(0).add(new Node(5))
root.children(0).add(new Node(6))
root.children(2).add(new Node(7))
root.children(2).add(new Node(8))
root.children(0).children(0).add(new Node(9))
root.children(0).children(0).add(new Node(10))
root.children(2).children(0).add(new Node(11))
root.children(2).children(0).add(new Node(12))
root
}
def bfs(nodes: List[Node]): List[Node] = {
if (nodes.nonEmpty) {
nodes ++ bfs(nodes.flatMap(_.children))
} else {
List.empty
}
}
"BFS" should "work" in {
println(bfs(List(tree())))
}
}
输出:
List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
其他回答
以下是我的完全递归实现的双向图的广度优先搜索的代码,而不使用循环和队列。
public class Graph { public int V; public LinkedList<Integer> adj[]; Graph(int v) { V = v; adj = new LinkedList[v]; for (int i=0; i<v; ++i) adj[i] = new LinkedList<>(); } void addEdge(int v,int w) { adj[v].add(w); adj[w].add(v); } public LinkedList<Integer> getAdjVerted(int vertex) { return adj[vertex]; } public String toString() { String s = ""; for (int i=0;i<adj.length;i++) { s = s +"\n"+i +"-->"+ adj[i] ; } return s; } } //BFS IMPLEMENTATION public static void recursiveBFS(Graph graph, int vertex,boolean visited[], boolean isAdjPrinted[]) { if (!visited[vertex]) { System.out.print(vertex +" "); visited[vertex] = true; } if(!isAdjPrinted[vertex]) { isAdjPrinted[vertex] = true; List<Integer> adjList = graph.getAdjVerted(vertex); printAdjecent(graph, adjList, visited, 0,isAdjPrinted); } } public static void recursiveBFS(Graph graph, List<Integer> vertexList, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < vertexList.size()) { recursiveBFS(graph, vertexList.get(i), visited, isAdjPrinted); recursiveBFS(graph, vertexList, visited, i+1, isAdjPrinted); } } public static void printAdjecent(Graph graph, List<Integer> list, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < list.size()) { if (!visited[list.get(i)]) { System.out.print(list.get(i)+" "); visited[list.get(i)] = true; } printAdjecent(graph, list, visited, i+1, isAdjPrinted); } else { recursiveBFS(graph, list, visited, 0, isAdjPrinted); } }下面是简短的Scala解决方案:
def bfs(nodes: List[Node]): List[Node] = {
if (nodes.nonEmpty) {
nodes ++ bfs(nodes.flatMap(_.children))
} else {
List.empty
}
}
使用返回值作为累加器的想法是很适合的。 可以在其他语言中以类似的方式实现,只需确保您的递归函数处理的节点列表。
测试代码清单(使用@marco测试树):
import org.scalatest.FlatSpec
import scala.collection.mutable
class Node(val value: Int) {
private val _children: mutable.ArrayBuffer[Node] = mutable.ArrayBuffer.empty
def add(child: Node): Unit = _children += child
def children = _children.toList
override def toString: String = s"$value"
}
class BfsTestScala extends FlatSpec {
// 1
// / | \
// 2 3 4
// / | | \
// 5 6 7 8
// / | | \
// 9 10 11 12
def tree(): Node = {
val root = new Node(1)
root.add(new Node(2))
root.add(new Node(3))
root.add(new Node(4))
root.children(0).add(new Node(5))
root.children(0).add(new Node(6))
root.children(2).add(new Node(7))
root.children(2).add(new Node(8))
root.children(0).children(0).add(new Node(9))
root.children(0).children(0).add(new Node(10))
root.children(2).children(0).add(new Node(11))
root.children(2).children(0).add(new Node(12))
root
}
def bfs(nodes: List[Node]): List[Node] = {
if (nodes.nonEmpty) {
nodes ++ bfs(nodes.flatMap(_.children))
} else {
List.empty
}
}
"BFS" should "work" in {
println(bfs(List(tree())))
}
}
输出:
List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
Here is a JavaScript Implementation that fakes Breadth First Traversal with Depth First recursion. I'm storing the node values at each depth inside an array, inside of a hash. If a level already exists(we have a collision), so we just push to the array at that level. You could use an array instead of a JavaScript object as well since our levels are numeric and can serve as array indices. You can return nodes, values, convert to a Linked List, or whatever you want. I'm just returning values for the sake of simplicity.
BinarySearchTree.prototype.breadthFirstRec = function() {
var levels = {};
var traverse = function(current, depth) {
if (!current) return null;
if (!levels[depth]) levels[depth] = [current.value];
else levels[depth].push(current.value);
traverse(current.left, depth + 1);
traverse(current.right, depth + 1);
};
traverse(this.root, 0);
return levels;
};
var bst = new BinarySearchTree();
bst.add(20, 22, 8, 4, 12, 10, 14, 24);
console.log('Recursive Breadth First: ', bst.breadthFirstRec());
/*Recursive Breadth First:
{ '0': [ 20 ],
'1': [ 8, 22 ],
'2': [ 4, 12, 24 ],
'3': [ 10, 14 ] } */
下面是一个使用迭代方法的实际广度优先遍历的示例。
BinarySearchTree.prototype.breadthFirst = function() {
var result = '',
queue = [],
current = this.root;
if (!current) return null;
queue.push(current);
while (current = queue.shift()) {
result += current.value + ' ';
current.left && queue.push(current.left);
current.right && queue.push(current.right);
}
return result;
};
console.log('Breadth First: ', bst.breadthFirst());
//Breadth First: 20 8 22 4 12 24 10 14
下面是递归BFS的Scala 2.11.4实现。为了简洁起见,我牺牲了尾部调用优化,但是TCOd版本非常相似。参见@snv的帖子。
import scala.collection.immutable.Queue
object RecursiveBfs {
def bfs[A](tree: Tree[A], target: A): Boolean = {
bfs(Queue(tree), target)
}
private def bfs[A](forest: Queue[Tree[A]], target: A): Boolean = {
forest.dequeueOption exists {
case (E, tail) => bfs(tail, target)
case (Node(value, _, _), _) if value == target => true
case (Node(_, l, r), tail) => bfs(tail.enqueue(List(l, r)), target)
}
}
sealed trait Tree[+A]
case class Node[+A](data: A, left: Tree[A], right: Tree[A]) extends Tree[A]
case object E extends Tree[Nothing]
}
下面的方法使用DFS算法来获取特定深度的所有节点——这与对该级别进行BFS相同。如果您找到树的深度,并对所有级别执行此操作,结果将与BFS相同。
public void PrintLevelNodes(Tree root, int level) {
if (root != null) {
if (level == 0) {
Console.Write(root.Data);
return;
}
PrintLevelNodes(root.Left, level - 1);
PrintLevelNodes(root.Right, level - 1);
}
}
for (int i = 0; i < depth; i++) {
PrintLevelNodes(root, i);
}
找到树的深度是小菜一碟:
public int MaxDepth(Tree root) {
if (root == null) {
return 0;
} else {
return Math.Max(MaxDepth(root.Left), MaxDepth(root.Right)) + 1;
}
}