我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

创建优先级队列。 将所有元素插入堆中。 调用poll() k次。 getKthLargestElements(int[] arr) { PriorityQueue<Integer> pq = new PriorityQueue<>((x, y) -> (y-x)); //将所有元素插入堆中 For (int ele: arr) pq.offer(避署); //调用poll() k次 int i = 0; 而(i&lt; k) { Int result = pq.poll(); } 返回结果; }

其他回答

Haskell的解决方案:

kthElem index list = sort list !! index

withShape ~[]     []     = []
withShape ~(x:xs) (y:ys) = x : withShape xs ys

sort []     = []
sort (x:xs) = (sort ls `withShape` ls) ++ [x] ++ (sort rs `withShape` rs)
  where
   ls = filter (<  x)
   rs = filter (>= x)

这通过使用withShape方法来实现中值解的中值,从而发现分区的大小,而无需实际计算分区大小。

我实现了在n个未排序元素中寻找第k个最小值的动态规划,特别是竞赛方法。执行时间为O(n + klog(n))。所使用的机制在维基百科关于选择算法的页面上被列为方法之一(如上面的帖子之一所示)。你可以阅读算法,也可以在我的博客页面“查找k个最小值”上找到代码(java)。此外,逻辑可以对列表进行部分排序——在O(klog(n))时间内返回第一个K min(或max)。

虽然代码提供了第k个最小值的结果,但可以使用类似的逻辑来查找O(klog(n))中的第k个最大值,忽略创建比赛树的前期工作。

这种方法怎么样

保持一个长度为k的缓冲区和一个tmp_max,得到tmp_max为O(k)并执行n次因此类似于O(kn)

是这样还是我漏掉了什么?

虽然它没有击败快速选择的平均情况和中值统计方法的最坏情况,但它非常容易理解和实现。

它类似于快速排序策略,在快速排序策略中,我们选择一个任意的枢轴,并将较小的元素放在它的左边,将较大的元素放在右边

    public static int kthElInUnsortedList(List<int> list, int k)
    {
        if (list.Count == 1)
            return list[0];

        List<int> left = new List<int>();
        List<int> right = new List<int>();

        int pivotIndex = list.Count / 2;
        int pivot = list[pivotIndex]; //arbitrary

        for (int i = 0; i < list.Count && i != pivotIndex; i++)
        {
            int currentEl = list[i];
            if (currentEl < pivot)
                left.Add(currentEl);
            else
                right.Add(currentEl);
        }

        if (k == left.Count + 1)
            return pivot;

        if (left.Count < k)
            return kthElInUnsortedList(right, k - left.Count - 1);
        else
            return kthElInUnsortedList(left, k);
    }

我会这样做:

initialize empty doubly linked list l
for each element e in array
    if e larger than head(l)
        make e the new head of l
        if size(l) > k
            remove last element from l

the last element of l should now be the kth largest element

您可以简单地存储指向链表中第一个和最后一个元素的指针。它们只在更新列表时更改。

更新:

initialize empty sorted tree l
for each element e in array
    if e between head(l) and tail(l)
        insert e into l // O(log k)
        if size(l) > k
            remove last element from l

the last element of l should now be the kth largest element