我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

Haskell的解决方案:

kthElem index list = sort list !! index

withShape ~[]     []     = []
withShape ~(x:xs) (y:ys) = x : withShape xs ys

sort []     = []
sort (x:xs) = (sort ls `withShape` ls) ++ [x] ++ (sort rs `withShape` rs)
  where
   ls = filter (<  x)
   rs = filter (>= x)

这通过使用withShape方法来实现中值解的中值,从而发现分区的大小,而无需实际计算分区大小。

其他回答

转到这个链接的结尾:...........

http://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-3-worst-case-linear-time/

根据本文,在n个项目的列表中寻找第k个最大的项目,下面的算法在最坏的情况下将花费O(n)时间。

将数组分成n/5个列表,每个列表有5个元素。 求每个5个元素的子数组的中值。 递归地找到所有中位数的中位数,记作M 将数组划分为两个子数组第一个子数组包含大于M的元素,设这个子数组为a1,而其他子数组包含小于M的元素,设这个子数组为a2。 如果k <= |a1|,返回选择(a1,k)。 k−1 = |a1|,返回M。 如果k> |a1| + 1,返回选择(a2,k−a1−1)。

分析:如原文所述:

我们使用中位数将列表分成两部分(前一半, 如果k <= n/2,反之则为后半部分)。这个算法需要 对于某个常数c,递归第一级的时间cn/2 at 下一层(因为我们在大小为n/2的列表中递归),cn/4在 第三层,以此类推。总时间为cn + cn/2 + cn/4 + .... = 2cn = o(n)。

为什么分区大小是5而不是3?

如原文所述:

将列表除以5可以保证最坏情况下70−30的分割。至少 至少一半的中位数大于中位数的中位数 n/5块中的一半至少有3个元素,这就给出了a 3n/10的分割,这意味着另一个分区在最坏情况下是7n/10。 得到T(n) = T(n/5)+T(7n/10)+O(n)由于n/5+7n/10 < 1 最差情况运行时间isO(n)。

现在我尝试将上述算法实现为:

public static int findKthLargestUsingMedian(Integer[] array, int k) {
        // Step 1: Divide the list into n/5 lists of 5 element each.
        int noOfRequiredLists = (int) Math.ceil(array.length / 5.0);
        // Step 2: Find pivotal element aka median of medians.
        int medianOfMedian =  findMedianOfMedians(array, noOfRequiredLists);
        //Now we need two lists split using medianOfMedian as pivot. All elements in list listOne will be grater than medianOfMedian and listTwo will have elements lesser than medianOfMedian.
        List<Integer> listWithGreaterNumbers = new ArrayList<>(); // elements greater than medianOfMedian
        List<Integer> listWithSmallerNumbers = new ArrayList<>(); // elements less than medianOfMedian
        for (Integer element : array) {
            if (element < medianOfMedian) {
                listWithSmallerNumbers.add(element);
            } else if (element > medianOfMedian) {
                listWithGreaterNumbers.add(element);
            }
        }
        // Next step.
        if (k <= listWithGreaterNumbers.size()) return findKthLargestUsingMedian((Integer[]) listWithGreaterNumbers.toArray(new Integer[listWithGreaterNumbers.size()]), k);
        else if ((k - 1) == listWithGreaterNumbers.size()) return medianOfMedian;
        else if (k > (listWithGreaterNumbers.size() + 1)) return findKthLargestUsingMedian((Integer[]) listWithSmallerNumbers.toArray(new Integer[listWithSmallerNumbers.size()]), k-listWithGreaterNumbers.size()-1);
        return -1;
    }

    public static int findMedianOfMedians(Integer[] mainList, int noOfRequiredLists) {
        int[] medians = new int[noOfRequiredLists];
        for (int count = 0; count < noOfRequiredLists; count++) {
            int startOfPartialArray = 5 * count;
            int endOfPartialArray = startOfPartialArray + 5;
            Integer[] partialArray = Arrays.copyOfRange((Integer[]) mainList, startOfPartialArray, endOfPartialArray);
            // Step 2: Find median of each of these sublists.
            int medianIndex = partialArray.length/2;
            medians[count] = partialArray[medianIndex];
        }
        // Step 3: Find median of the medians.
        return medians[medians.length / 2];
    }

为了完成,另一种算法利用优先队列,花费时间O(nlogn)。

public static int findKthLargestUsingPriorityQueue(Integer[] nums, int k) {
        int p = 0;
        int numElements = nums.length;
        // create priority queue where all the elements of nums will be stored
        PriorityQueue<Integer> pq = new PriorityQueue<Integer>();

        // place all the elements of the array to this priority queue
        for (int n : nums) {
            pq.add(n);
        }

        // extract the kth largest element
        while (numElements - k + 1 > 0) {
            p = pq.poll();
            k++;
        }

        return p;
    }

这两个算法都可以被测试为:

public static void main(String[] args) throws IOException {
        Integer[] numbers = new Integer[]{2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21, 22, 25, 24, 14};
        System.out.println(findKthLargestUsingMedian(numbers, 8));
        System.out.println(findKthLargestUsingPriorityQueue(numbers, 8));
    }

如预期输出为: 18 18

你可以在O(n)个时间和常数空间中找到第k个最小的元素。如果我们认为数组只用于整数。

方法是对数组值的范围进行二分搜索。如果min_value和max_value都在整数范围内,我们可以对该范围进行二分搜索。 我们可以写一个比较器函数,它会告诉我们是否有任何值是第k个最小值或小于第k个最小值或大于第k个最小值。 进行二分搜索,直到找到第k小的数

这是它的代码

类解决方案:

def _iskthsmallest(self, A, val, k):
    less_count, equal_count = 0, 0
    for i in range(len(A)):
        if A[i] == val: equal_count += 1
        if A[i] < val: less_count += 1

    if less_count >= k: return 1
    if less_count + equal_count < k: return -1
    return 0

def kthsmallest_binary(self, A, min_val, max_val, k):
    if min_val == max_val:
        return min_val
    mid = (min_val + max_val)/2
    iskthsmallest = self._iskthsmallest(A, mid, k)
    if iskthsmallest == 0: return mid
    if iskthsmallest > 0: return self.kthsmallest_binary(A, min_val, mid, k)
    return self.kthsmallest_binary(A, mid+1, max_val, k)

# @param A : tuple of integers
# @param B : integer
# @return an integer
def kthsmallest(self, A, k):
    if not A: return 0
    if k > len(A): return 0
    min_val, max_val = min(A), max(A)
    return self.kthsmallest_binary(A, min_val, max_val, k)

如果你想要一个真正的O(n)算法,而不是O(kn)或类似的算法,那么你应该使用快速选择(它基本上是快速排序,你会丢弃你不感兴趣的分区)。我的教授写了一篇很棒的文章,包括运行时分析:(参考)

QuickSelect算法可以快速找到包含n个元素的无序数组中的第k个最小元素。这是一个随机算法,所以我们计算最坏情况下的预期运行时间。

这是算法。

QuickSelect(A, k)
  let r be chosen uniformly at random in the range 1 to length(A)
  let pivot = A[r]
  let A1, A2 be new arrays
  # split into a pile A1 of small elements and A2 of big elements
  for i = 1 to n
    if A[i] < pivot then
      append A[i] to A1
    else if A[i] > pivot then
      append A[i] to A2
    else
      # do nothing
  end for
  if k <= length(A1):
    # it's in the pile of small elements
    return QuickSelect(A1, k)
  else if k > length(A) - length(A2)
    # it's in the pile of big elements
    return QuickSelect(A2, k - (length(A) - length(A2))
  else
    # it's equal to the pivot
    return pivot

这个算法的运行时间是多少?如果对手为我们抛硬币,我们可能会发现主元总是最大的元素,k总是1,给出的运行时间为

T(n) = Theta(n) + T(n-1) = Theta(n2)

但如果选择确实是随机的,则预期运行时间由

T(n) <= Theta(n) + (1/n) ∑i=1 to nT(max(i, n-i-1))

我们做了一个不完全合理的假设递归总是落在A1或A2中较大的那个。

让我们猜测对于某个a T(n) <= an,然后我们得到

T(n) 
 <= cn + (1/n) ∑i=1 to nT(max(i-1, n-i))
 = cn + (1/n) ∑i=1 to floor(n/2) T(n-i) + (1/n) ∑i=floor(n/2)+1 to n T(i)
 <= cn + 2 (1/n) ∑i=floor(n/2) to n T(i)
 <= cn + 2 (1/n) ∑i=floor(n/2) to n ai

现在我们要用加号右边这个可怕的和来吸收左边的cn。如果我们将其限定为2(1/n)∑i=n/2到n an,我们大致得到2(1/n)(n/2)an = an。但是这个太大了,没有多余的空间来挤进一个cn。让我们用等差级数公式展开和:

i=floor(n/2) to n i  
 = ∑i=1 to n i - ∑i=1 to floor(n/2) i  
 = n(n+1)/2 - floor(n/2)(floor(n/2)+1)/2  
 <= n2/2 - (n/4)2/2  
 = (15/32)n2

我们利用n“足够大”的优势,用更干净(更小)的n/4替换丑陋的地板(n/2)因子。现在我们可以继续

cn + 2 (1/n) ∑i=floor(n/2) to n ai,
 <= cn + (2a/n) (15/32) n2
 = n (c + (15/16)a)
 <= an

提供了> 16c。

得到T(n) = O(n)显然是(n)所以我们得到T(n) = (n)

Haskell的解决方案:

kthElem index list = sort list !! index

withShape ~[]     []     = []
withShape ~(x:xs) (y:ys) = x : withShape xs ys

sort []     = []
sort (x:xs) = (sort ls `withShape` ls) ++ [x] ++ (sort rs `withShape` rs)
  where
   ls = filter (<  x)
   rs = filter (>= x)

这通过使用withShape方法来实现中值解的中值,从而发现分区的大小,而无需实际计算分区大小。