如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)


当前回答

稍微改进一下e。james的回答:

double dx = abs(circle.x - rect.x) - rect.w / 2,
       dy = abs(circle.y - rect.y) - rect.h / 2;

if (dx > circle.r || dy > circle.r) { return false; }
if (dx <= 0 || dy <= 0) { return true; }

return (dx * dx + dy * dy <= circle.r * circle.r);

这就减去了一次,而不是最多减去三次。

其他回答

我的方法:

从OBB /矩形上/中的圆计算closest_point (最近点将位于边缘/角落或内部) 计算从closest_point到圆心的squared_distance (距离的平方避免了平方根) 返回squared_distance <=圆半径的平方

假设你有矩形的四条边,检查从这些边到圆心的距离,如果小于半径,那么这些形状是相交的。

if sqrt((rectangleRight.x - circleCenter.x)^2 +
        (rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleRight.x - circleCenter.x)^2 +
        (rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleLeft.x - circleCenter.x)^2 +
        (rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect

if sqrt((rectangleLeft.x - circleCenter.x)^2 +
        (rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect

我想出的最简单的解决办法非常直接。

它的工作原理是在矩形中找到离圆最近的点,然后比较距离。

您可以通过一些操作来完成所有这些操作,甚至可以避免使用平方根函数。

public boolean intersects(float cx, float cy, float radius, float left, float top, float right, float bottom)
{
   float closestX = (cx < left ? left : (cx > right ? right : cx));
   float closestY = (cy < top ? top : (cy > bottom ? bottom : cy));
   float dx = closestX - cx;
   float dy = closestY - cy;

   return ( dx * dx + dy * dy ) <= radius * radius;
}

就是这样!上面的解决方案假设原点在世界的左上方,x轴指向下方。

如果你想要一个解决移动的圆形和矩形之间碰撞的解决方案,这要复杂得多,并且包含在我的另一个答案中。

def colision(rect, circle):
dx = rect.x - circle.x
dy = rect.y - circle.y
distance = (dy**2 + dx**2)**0.5
angle_to = (rect.angle + math.atan2(dx, dy)/3.1415*180.0) % 360
if((angle_to>135 and angle_to<225) or (angle_to>0 and angle_to<45) or (angle_to>315 and angle_to<360)):
    if distance <= circle.rad/2.+((rect.height/2.0)*(1.+0.5*abs(math.sin(angle_to*math.pi/180.)))):
        return True
else:
    if distance <= circle.rad/2.+((rect.width/2.0)*(1.+0.5*abs(math.cos(angle_to*math.pi/180.)))):
        return True
return False

为了可视化,拿你的键盘的numpad。如果键“5”代表你的矩形,那么所有的键1-9代表空间的9个象限除以构成矩形的线(5是里面的线)。

1)如果圆的中心在象限5(即在矩形内),则两个形状相交。

这里有两种可能的情况: a)圆与矩形的两条或多条相邻边相交。 b)圆与矩形的一条边相交。

第一种情况很简单。如果圆与矩形的两条相邻边相交,则它必须包含连接这两条边的角。(或者说它的中心在象限5,我们已经讲过了。还要注意,圆只与矩形的两条相对边相交的情况也被覆盖了。)

2)如果矩形的任意角A、B、C、D在圆内,则这两个形状相交。

第二种情况比较棘手。我们应该注意到,只有当圆的中心位于2、4、6或8象限中的一个象限时,才会发生这种情况。(事实上,如果中心在1、3、7、8象限中的任何一个象限上,则相应的角将是离它最近的点。)

现在我们有了圆的中心在一个“边”象限内的情况,它只与相应的边相交。那么,边缘上最接近圆中心的点必须在圆内。

3)对于每条直线AB, BC, CD, DA,构造经过圆中心p的垂直线p(AB, p), p(BC, p), p(CD, p), p(DA, p),对于每条垂直线,如果与原边的交点在圆内,则两个图形相交。

最后一步有一个捷径。如果圆的圆心在象限8,边AB是上边,交点的y坐标是A和B, x坐标是P。

你可以构造四条线的交点并检查它们是否在相应的边上,或者找出P在哪个象限并检查相应的交点。两者都应该化简为相同的布尔方程。要注意的是,上面的步骤2并没有排除P位于“角落”象限之一;它只是在寻找一个十字路口。

编辑:事实证明,我忽略了一个简单的事实,即#2是#3的子情况。毕竟,角也是边缘上的点。请看下面@ShreevatsaR的回答,你会得到很好的解释。与此同时,忘记上面的第二条,除非你想要一个快速但冗余的检查。