如何计算两个GPS坐标之间的距离(使用经纬度)?


当前回答

在Python中,你可以使用geopy库使用WGS84椭球来计算测地线距离:

from geopy.distance import geodesic
newport_ri = (41.49008, -71.312796)
cleveland_oh = (41.499498, -81.695391)
print(geodesic(newport_ri, cleveland_oh).km)

其他回答

在Python中,你可以使用geopy库使用WGS84椭球来计算测地线距离:

from geopy.distance import geodesic
newport_ri = (41.49008, -71.312796)
cleveland_oh = (41.499498, -81.695391)
print(geodesic(newport_ri, cleveland_oh).km)

基于Roman Makarov对这个线程的回复的Java版本的Haversine算法

public class HaversineAlgorithm {

    static final double _eQuatorialEarthRadius = 6378.1370D;
    static final double _d2r = (Math.PI / 180D);

    public static int HaversineInM(double lat1, double long1, double lat2, double long2) {
        return (int) (1000D * HaversineInKM(lat1, long1, lat2, long2));
    }

    public static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
        double dlong = (long2 - long1) * _d2r;
        double dlat = (lat2 - lat1) * _d2r;
        double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
                * Math.pow(Math.sin(dlong / 2D), 2D);
        double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
        double d = _eQuatorialEarthRadius * c;

        return d;
    }

}

如果你需要更准确的数据,可以看看这个。

Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a) They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods such as great-circle distance which assume a spherical Earth. The first (direct) method computes the location of a point which is a given distance and azimuth (direction) from another point. The second (inverse) method computes the geographical distance and azimuth between two given points. They have been widely used in geodesy because they are accurate to within 0.5 mm (0.020″) on the Earth ellipsoid.

寻找带谷歌的哈弗辛;以下是我的解决方案:

#include <math.h>
#include "haversine.h"

#define d2r (M_PI / 180.0)

//calculate haversine distance for linear distance
double haversine_km(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 6367 * c;

    return d;
}

double haversine_mi(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 3956 * c; 

    return d;
}

Unity版本c#

Haversine Algorithm。

public float Distance(float lat1, float lon1, float lat2, float lon2)
{
    var earthRadiusKm = 6371;

    var dLat = (lat2 - lat1) * Mathf.Rad2Deg;
    var dLon = (lon2 - lon1) * Mathf.Rad2Deg;

    var a = Mathf.Sin(dLat / 2) * Mathf.Sin(dLat / 2) +
            Mathf.Sin(dLon / 2) * Mathf.Sin(dLon / 2) * 
            Mathf.Cos(lat1 * Mathf.Rad2Deg) * Mathf.Cos(lat2 * Mathf.Rad2Deg);

    var c = 2 * Mathf.Atan2(Mathf.Sqrt(a), Mathf.Sqrt(1 - a));
    return earthRadiusKm * c;
}