遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。

我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。

问题:

你用GA/GP解决过什么问题? 你使用了哪些库/框架?

我在寻找第一手的经验,所以请不要回答,除非你有。


当前回答

In 2007-9 I developed some software for reading datamatrix patterns. Often these patterns were difficult to read, being indented into scratched surfaces with all kinds of reflectance properties, fuzzy chemically etched markings and so on. I used a GA to fine tune various parameters of the vision algorithms to give the best results on a database of 300 images having known properties. Parameters were things like downsampling resolution, RANSAC parameters, amount of erosion and dilation, low pass filtering radius, and a few others. Running the optimisation over several days this produced results which were about 20% better than naive values on a test set of images unseen during the optimisation phase.

这个系统完全是从零开始编写的,我没有使用任何其他库。我并不反对使用这些东西,只要它们能提供可靠的结果,但是您必须注意许可兼容性和代码可移植性问题。

其他回答

我是一个研究使用进化计算(EC)来自动修复现有程序中的错误的团队的成员。我们已经在现实世界的软件项目中成功地修复了一些真实的错误(参见本项目的主页)。

这种EC修复技术有两种应用。

The first (code and reproduction information available through the project page) evolves the abstract syntax trees parsed from existing C programs and is implemented in Ocaml using our own custom EC engine. The second (code and reproduction information available through the project page), my personal contribution to the project, evolves the x86 assembly or Java byte code compiled from programs written in a number of programming languages. This application is implemented in Clojure and also uses its own custom built EC engine.

进化计算的一个优点是技术的简单性,使得编写自己的自定义实现不太困难。有关遗传规划的一个很好的免费的介绍性文本,请参阅遗传规划的现场指南。

几周前,我提出了一个关于SO的解决方案,使用遗传算法来解决图布局的问题。这是一个约束优化问题的例子。

同样在机器学习领域,我用c/c++从头开始实现了一个基于ga的分类规则框架。 我还在一个示例项目中使用了GA来训练人工神经网络(ANN),而不是使用著名的反向传播算法。

此外,作为我研究生研究的一部分,我已经使用GA来训练隐马尔可夫模型,作为基于em的Baum-Welch算法的额外方法(还是在c/c++中)。

As part of my undergraduate CompSci degree, we were assigned the problem of finding optimal jvm flags for the Jikes research virtual machine. This was evaluated using the Dicappo benchmark suite which returns a time to the console. I wrote a distributed gentic alogirthm that switched these flags to improve the runtime of the benchmark suite, although it took days to run to compensate for hardware jitter affecting the results. The only problem was I didn't properly learn about the compiler theory (which was the intent of the assignment).

我本可以用现有的默认标志来播种初始种群,但有趣的是,算法发现了一个与O3优化级别非常相似的配置(但实际上在许多测试中更快)。

编辑:我还用Python写了我自己的遗传算法框架,只是使用popen命令来运行各种基准测试,尽管如果不是评估作业,我会看看pyEvolve。

在读完《盲人钟表匠》之后,我对道金斯所说的帕斯卡程序产生了兴趣,他开发了一个可以随着时间进化的生物模型。我对使用Swarm编写自己的程序很感兴趣。我没有画出他画的那些奇特的生物图形,但我的“染色体”控制着影响生物体生存能力的特征。他们生活在一个简单的世界里,可以与彼此和环境决一死战。

生物的生存或死亡部分取决于偶然性,但也取决于它们如何有效地适应当地环境,如何有效地消耗营养物质以及如何成功地繁殖。这很有趣,但也向我妻子证明了我是一个极客。

我曾经尝试制作一个围棋电脑播放器,完全基于基因编程。每个程序都将被视为一系列动作的评估函数。即使是在一个相当小的3x4板上,制作的程序也不是很好。

我使用Perl,并自己编写了所有代码。我今天会做不同的事情。