昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

我提出了另一个解决方案,它不会承诺更少的操作,也不会减少时间消耗,但应该尝试看看它是否能成为一个足够好的启发式方法,在大量袜子配对中提供更少的时间消耗。

前提条件:不能保证有相同的袜子。如果它们的颜色相同,并不意味着它们的大小或图案相同。袜子随机洗牌。袜子的数量可能是奇数(有些不见了,我们不知道有多少)。准备记住一个变量“index”并将其设置为0。

结果将有一个或两个桩:1。“匹配”和2。“缺少”

启发式:

找到最与众不同的袜子。找到匹配项。如果没有匹配项,请将其放在“缺失”堆上。从1开始重复。直到没有最与众不同的袜子。如果袜子少于6只,请转到11只。盲目地将所有袜子与邻居配对(不要打包)找到所有匹配的对,将其打包并将打包的对移动到“匹配”的堆中;如果没有新的匹配项-将“索引”增加1如果“index”大于2(这可能取决于袜子的值因为袜子数量越多盲目配对)进入11打乱其余的转到1忘记“索引”挑选一只袜子查找其配对如果没有袜子,就把它移到“失踪”的那一堆如果找到匹配项,将其配对,将其打包并移动到“匹配”堆中如果还有不止一只袜子,那就去12只如果只剩下一个,请转到14满意的微笑:)

此外,还可以添加检查袜子是否损坏,就像移除袜子一样。它可以插入2到3之间,13到14之间。

我期待听到任何经验或更正。

其他回答

从你的问题来看,你显然没有太多洗衣方面的实际经验:)。你需要一种算法,能很好地处理少量不可配对的袜子。

到目前为止,答案还没有充分利用我们的人类模式识别能力。集合游戏提供了如何做好这一点的线索:将所有袜子放在一个二维空间中,这样你就可以很好地识别它们,并用手轻松地够到它们。这将您的面积限制在120*80厘米左右。从那里选择您识别的配对并将其删除。将多余的袜子放在空闲空间,然后重复。如果你为穿着容易辨认的袜子的人洗衣服(脑海中浮现的是小孩子),你可以先选择袜子来进行基数排序。该算法仅在单袜子数量较少时有效

如果“移动”操作相当昂贵,而“比较”操作很便宜,并且无论如何都需要将整个集合移动到一个缓冲区中,在那里搜索速度比原始存储快得多。。。只需将排序整合到强制移动中即可。

我发现,将分拣过程整合到晾衣架中,这一过程变得轻而易举。无论如何,我需要拿起每一只袜子,然后把它挂起来(移动),把它挂在绳子上的某个特定位置几乎不需要任何费用。现在,为了不强制搜索整个缓冲区(字符串),我选择按颜色/阴影放置袜子。左边更黑,右边更亮,前面更鲜艳。现在,在我挂上每一只袜子之前,我先看看它的“右边附近”是否已经有一只匹配的袜子——这限制了“扫描”其他2-3只袜子——如果有,我就把另一只挂在旁边。然后,我把它们成对地卷起来,然后在干的时候把它们从绳子上取下来。

现在,这似乎与顶级答案所建议的“按颜色形成桩”没有什么不同,但首先,通过不选择离散桩而是选择范围,我没有问题将“紫色”分类为“红色”还是“蓝色”桩;它只是介于两者之间。然后通过集成两个操作(挂起晾干和分拣),挂起时的分拣开销大约是单独分拣的10%。

非算法答案,但当我这样做时“高效”:

步骤1)丢弃所有现有袜子第2步)去沃尔玛买10-n包的白色和m包黑色。日常无需其他颜色生活

然而,有时,我不得不再次这样做(丢失的袜子、损坏的袜子等),我讨厌太频繁地丢弃完美的袜子(我希望他们继续出售相同的袜子参考!),所以我最近采取了不同的方法。

算法答案:

考虑一下,如果你只为第二叠袜子画一只袜子,就像你正在做的那样,你在天真的搜索中找到匹配袜子的几率很低。

所以,随机挑选其中五个,记住它们的形状或长度。

为什么是五?通常情况下,人类在工作记忆中记住五到七个不同的元素是很好的——有点像RPN堆栈的人类等价物——五个是安全的默认值。

从2n-5的堆栈中选择一个。现在,在你画的五个图案中寻找一个匹配(视觉模式匹配-人类擅长用一个小堆栈),如果你没有找到一个,那么把它添加到你的五个。继续从袜子堆中随机挑选袜子,并与你的5+1袜子进行比较。随着堆栈的增长,它会降低性能,但会提高赔率。快得多。

请随意写下公式,以计算50%的匹配几率需要抽取多少样本。IIRC这是一个超几何定律。

我每天早上都会这样做,很少需要三次以上的平局——但我有n双类似的m形白袜子(大约10双,不分输赢)。现在你可以估计我的股票堆的大小:-)

顺便说一句,我发现,每次我需要一双袜子时,整理所有袜子的交易成本之和远远少于一次整理和装订袜子。准时制的效果更好,因为这样你就不必绑袜子了,而且边际回报也在减少(也就是说,当你在洗衣店的某个地方时,你一直在寻找那两到三只袜子,而你需要完成袜子的搭配,而你却在这上面浪费了时间)。

List<Sock> UnSearchedSocks = getAllSocks();
List<Sock> UnMatchedSocks = new list<Sock>();
List<PairOfSocks> PairedSocks = new list<PairOfSocks>();

foreach (Sock newSock in UnsearchedSocks)
{
  Sock MatchedSock = null;
  foreach(Sock UnmatchedSock in UnmatchedSocks)
  {
    if (UnmatchedSock.isPairOf(newSock))
    {
      MatchedSock = UnmatchedSock;
      break;
    }
  }
  if (MatchedSock != null)
  {
    UnmatchedSocks.remove(MatchedSock);
    PairedSocks.Add(new PairOfSocks(MatchedSock, NewSock));
  }
  else
  {
    UnmatchedSocks.Add(NewSock);
  }
}

袜子,无论是真的还是类似的数据结构,都将成对提供。

最简单的答案是,在允许袜子对分开之前,应该初始化袜子对的单个数据结构,该结构包含指向左右袜子的指针,从而可以直接或通过袜子对引用袜子。袜子也可以扩展为包含指向其伙伴的指针。

这通过使用抽象层来消除任何计算配对问题。

将同样的想法应用于袜子配对的实际问题,显而易见的答案是:不要让你的袜子不配对。袜子是一双提供的,一双放在抽屉里(也许是把它们捆在一起),一双穿。但可能脱漆的地方是在洗衣机里,所以所需要的只是一个物理机制,让袜子保持在一起并有效地清洗。

有两种物理可能性:

对于一个“pair”对象,它保持指向每只袜子的指针,我们可以使用一个布袋来将袜子放在一起。这似乎是巨大的开销。

但是,为了让每一只袜子都能互相参照,有一个很好的解决方案:一个popper(如果你是美国人,可以使用“按扣”),比如:

http://www.aliexpress.com/compare/compare-invisible-snap-buttons.html

然后,你所做的就是在脱下袜子并将其放进洗衣篮后立即将袜子扣在一起,再次消除了需要用“配对”概念的物理抽象来对袜子进行配对的问题。