考虑以下代码:

0.1 + 0.2 == 0.3  ->  false
0.1 + 0.2         ->  0.30000000000000004

为什么会出现这些错误?


当前回答

你试过胶带解决方案了吗?

尝试确定错误发生的时间,并用简短的if语句修复它们,这并不漂亮,但对于某些问题,这是唯一的解决方案,这就是其中之一。

 if( (n * 0.1) < 100.0 ) { return n * 0.1 - 0.000000000000001 ;}
                    else { return n * 0.1 + 0.000000000000001 ;}    

我在c#的一个科学模拟项目中也遇到过同样的问题,我可以告诉你,如果你忽视蝴蝶效应,它会变成一条大胖龙,咬你一口**

其他回答

浮点数的陷阱是它们看起来像十进制,但它们是二进制的。

2的唯一素因子是2,而10的素因子为2和5。这样做的结果是,每一个可以完全写成二进制分数的数字也可以完全写成十进制分数,但只有一部分可以写成十进制分数的数字可以写成二进制分数。

浮点数本质上是一个有效位数有限的二进制分数。如果你超过这些有效数字,那么结果将被四舍五入。

当您在代码中键入文字或调用函数将浮点数解析为字符串时,它需要一个十进制数,并将该十进制数的二进制近似值存储在变量中。

当您打印浮点数或调用函数将浮点数转换为字符串时,它将打印浮点数的十进制近似值。可以将二进制数字精确地转换为十进制,但在转换为字符串*时,我所知道的任何语言都不会默认这样做。一些语言使用固定数量的有效数字,其他语言使用最短的字符串,该字符串将“往返”返回到相同的浮点值。

*Python在将浮点数转换为“decimal.decimal”时确实会进行精确的转换。这是我所知道的获得浮点数的精确十进制等效值的最简单方法。

存储在计算机中的浮点数由两部分组成,一部分是整数,另一部分是基数乘以整数部分的指数。

如果计算机在基数为10的情况下工作,则0.1将是1 x 10⁻¹,0.2将是2 x 10⁻¹,0.3将是3 x 10⁻¹. 整数运算简单而准确,所以加上0.1+0.2显然会得到0.3。

计算机通常不以10为基数工作,而是以2为基数工作。对于某些值,仍然可以得到精确的结果,例如0.5是1 x 2⁻¹和0.25是1 x 2⁻²,将它们相加,结果为3 x 2⁻²或0.75。确切地

问题是数字可以精确地以10为基数表示,但不能以2为基数。这些数字需要四舍五入到最接近的相等值。假设非常常见的IEEE 64位浮点格式,最接近0.1的数字是3602879701896397 x 2⁻⁵⁵, 最接近0.2的数字是7205759403792794 x 2⁻⁵⁵; 将它们相加,得到10808639105689191 x 2⁻⁵⁵, 或精确的十进制值0.30000000000000000444089209850062616169452667236328125。浮点数通常四舍五入以显示。

另一种方法是:使用64位来表示数字。因此,无法精确表示超过2**64=18446744073709551616个不同的数字。

然而,Math表示,在0和1之间已经有无限多的小数。IEE 754定义了一种编码,以有效地将这64位用于更大的数字空间加上NaN和+/-无穷大,因此在精确表示的数字之间存在间隙,只填充近似的数字。

不幸的是,0.3存在差距。

为了好玩,我按照标准C99的定义玩了浮点数的表示,并编写了下面的代码。

代码以3个独立的组打印浮点的二进制表示

SIGN EXPONENT FRACTION

然后,它打印一个和,当以足够的精度求和时,它将显示硬件中真正存在的值。

因此,当你写float x=999…时,编译器会将该数字转换为函数xx打印的位表示,这样函数yy打印的和就等于给定的数字。

事实上,这个总数只是一个近似值。对于数字999999999,编译器将在浮点的位表示中插入数字1000000000

代码之后,我附加了一个控制台会话,在该会话中,我计算硬件中真正存在的两个常量(减去PI和999999999)的项和,并由编译器插入其中。

#include <stdio.h>
#include <limits.h>

void
xx(float *x)
{
    unsigned char i = sizeof(*x)*CHAR_BIT-1;
    do {
        switch (i) {
        case 31:
             printf("sign:");
             break;
        case 30:
             printf("exponent:");
             break;
        case 23:
             printf("fraction:");
             break;

        }
        char b=(*(unsigned long long*)x&((unsigned long long)1<<i))!=0;
        printf("%d ", b);
    } while (i--);
    printf("\n");
}

void
yy(float a)
{
    int sign=!(*(unsigned long long*)&a&((unsigned long long)1<<31));
    int fraction = ((1<<23)-1)&(*(int*)&a);
    int exponent = (255&((*(int*)&a)>>23))-127;

    printf(sign?"positive" " ( 1+":"negative" " ( 1+");
    unsigned int i = 1<<22;
    unsigned int j = 1;
    do {
        char b=(fraction&i)!=0;
        b&&(printf("1/(%d) %c", 1<<j, (fraction&(i-1))?'+':')' ), 0);
    } while (j++, i>>=1);

    printf("*2^%d", exponent);
    printf("\n");
}

void
main()
{
    float x=-3.14;
    float y=999999999;
    printf("%lu\n", sizeof(x));
    xx(&x);
    xx(&y);
    yy(x);
    yy(y);
}

这里是一个控制台会话,我在其中计算硬件中存在的浮点值的实际值。我使用bc打印主程序输出的项的总和。可以将该和插入python-repl或类似的内容中。

-- .../terra1/stub
@ qemacs f.c
-- .../terra1/stub
@ gcc f.c
-- .../terra1/stub
@ ./a.out
sign:1 exponent:1 0 0 0 0 0 0 fraction:0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 1 1
sign:0 exponent:1 0 0 1 1 1 0 fraction:0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0
negative ( 1+1/(2) +1/(16) +1/(256) +1/(512) +1/(1024) +1/(2048) +1/(8192) +1/(32768) +1/(65536) +1/(131072) +1/(4194304) +1/(8388608) )*2^1
positive ( 1+1/(2) +1/(4) +1/(16) +1/(32) +1/(64) +1/(512) +1/(1024) +1/(4096) +1/(16384) +1/(32768) +1/(262144) +1/(1048576) )*2^29
-- .../terra1/stub
@ bc
scale=15
( 1+1/(2) +1/(4) +1/(16) +1/(32) +1/(64) +1/(512) +1/(1024) +1/(4096) +1/(16384) +1/(32768) +1/(262144) +1/(1048576) )*2^29
999999999.999999446351872

就是这样。999999999的值实际上是

999999999.999999446351872

您也可以通过bc检查-3.14也受到干扰。不要忘记在bc中设置比例因子。

显示的金额是硬件内部的金额。通过计算它获得的值取决于设置的比例。我确实将比例因子设置为15。数学上,以无限的精度,它似乎是1000000000。

鉴于没有人提到这一点。。。

一些高级语言(如Python和Java)提供了克服二进制浮点限制的工具。例如:

Python的十进制模块和Java的BigDecimal类,它们在内部使用十进制表示法(与二进制表示法相反)表示数字。两者都有有限的精度,因此它们仍然容易出错,但它们解决了二进制浮点运算中最常见的问题。小数在处理金钱时很好:10美分加20美分总是正好是30美分:>>> 0.1 + 0.2 == 0.3错误>>>十进制('0.1')+十进制('0.2')==十进制('0.3')真的Python的十进制模块基于IEEE标准854-1987。Python的分数模块和Apache Common的BigFraction类。两者都将有理数表示为(分子、分母)对,它们可能给出比十进制浮点运算更精确的结果。

这两种解决方案都不是完美的(特别是如果我们考虑性能,或者如果我们需要非常高的精度),但它们仍然解决了二进制浮点运算的大量问题。