考虑以下代码:

0.1 + 0.2 == 0.3  ->  false
0.1 + 0.2         ->  0.30000000000000004

为什么会出现这些错误?


当前回答

你试过胶带解决方案了吗?

尝试确定错误发生的时间,并用简短的if语句修复它们,这并不漂亮,但对于某些问题,这是唯一的解决方案,这就是其中之一。

 if( (n * 0.1) < 100.0 ) { return n * 0.1 - 0.000000000000001 ;}
                    else { return n * 0.1 + 0.000000000000001 ;}    

我在c#的一个科学模拟项目中也遇到过同样的问题,我可以告诉你,如果你忽视蝴蝶效应,它会变成一条大胖龙,咬你一口**

其他回答

这个问题的许多重复问题都是关于浮点舍入对特定数字的影响。在实践中,通过查看感兴趣的计算的确切结果而不是仅仅阅读它,更容易了解它的工作原理。一些语言提供了实现这一点的方法,例如在Java中将浮点或双精度转换为BigDecimal。

由于这是一个语言不可知的问题,因此需要语言不可知工具,例如十进制到浮点转换器。

将其应用于问题中的数字,视为双精度:

0.1转换为0.1000000000000000055511151231257827021181583404541015625,

0.2转换为0.200000000000000011102230246251565404236316680908203125,

0.3转换为0.299999999999999988897769753748434595763683319091796875,以及

0.300000000000000004转换为0.30000000000000000444089209850062616169452667236328125。

手动或在十进制计算器(如Full Precision calculator)中添加前两个数字,显示实际输入的精确和为0.30000000000000000166533453693773481063544750213623046875。

如果四舍五入到等于0.3,则舍入误差将为0.000000000000000027755575615628913510591702705078125。四舍五入等于0.300000000000000004也会产生舍入误差0.000000000000000027755575615628913510591702705078125。打成平手的规则适用。

返回浮点转换器,0.300000000000000004的原始十六进制是3fd333333333334,以偶数结尾,因此是正确的结果。

由于这篇文章对当前的浮点实现进行了一般性的讨论,我想补充一下,有一些项目正在解决它们的问题。

看看https://posithub.org/例如,它展示了一种称为posit(及其前身unum)的数字类型,它承诺以更少的比特提供更好的精度。如果我的理解是正确的,它也解决了问题中的问题。非常有趣的项目,背后的人是数学家约翰·古斯塔夫森博士。整个过程都是开源的,用C/C++、Python、Julia和C#实现了许多实际的实现(https://hastlayer.com/arithmetics).

十进制数(如0.1、0.2和0.3)在二进制编码浮点类型中没有精确表示。0.1和0.2的近似值之和与0.3的近似值不同,因此,0.1+0.2==0.3的错误在这里可以更清楚地看到:

#include <stdio.h>

int main() {
    printf("0.1 + 0.2 == 0.3 is %s\n", 0.1 + 0.2 == 0.3 ? "true" : "false");
    printf("0.1 is %.23f\n", 0.1);
    printf("0.2 is %.23f\n", 0.2);
    printf("0.1 + 0.2 is %.23f\n", 0.1 + 0.2);
    printf("0.3 is %.23f\n", 0.3);
    printf("0.3 - (0.1 + 0.2) is %g\n", 0.3 - (0.1 + 0.2));
    return 0;
}

输出:

0.1 + 0.2 == 0.3 is false
0.1 is 0.10000000000000000555112
0.2 is 0.20000000000000001110223
0.1 + 0.2 is 0.30000000000000004440892
0.3 is 0.29999999999999998889777
0.3 - (0.1 + 0.2) is -5.55112e-17

为了更可靠地计算这些计算,您需要对浮点值使用基于十进制的表示。C标准没有默认指定此类类型,而是作为技术报告中描述的扩展。

_Decimal32、_Decimal64和_Decimal128类型可能在您的系统上可用(例如,GCC在选定的目标上支持它们,但Clang在OS X上不支持它们)。

这些奇怪的数字之所以出现,是因为计算机使用二进制(以2为基数)数字系统进行计算,而我们使用十进制(以10为基数)。

大多数分数不能用二进制或十进制或两者精确表示。结果-四舍五入(但精确)的数字结果。

简而言之,这是因为:

浮点数不能以二进制精确表示所有小数

因此,就像10/3不精确地存在于基数10中(它将是3.33……重复出现)一样,1/10也不存在于二进制中。

那又怎么样?如何处理?有什么解决办法吗?

为了提供最佳解决方案,我可以说我发现了以下方法:

parseFloat((0.1 + 0.2).toFixed(10)) => Will return 0.3

让我解释一下为什么这是最好的解决方案。正如上面提到的其他答案一样,使用现成的Javascript toFixed()函数来解决问题是一个好主意。但很可能你会遇到一些问题。

假设你将两个浮点数相加,如0.2和0.7,这里是:0.2+0.7=0.8999999999999999。

您的预期结果是0.9,这意味着您需要一个精度为1位数的结果。因此,您应该使用(0.2+0.7).tfixed(1)但是不能只给toFixed()一个特定的参数,因为它取决于给定的数字,例如

0.22 + 0.7 = 0.9199999999999999

在本例中,您需要2位精度,因此它应该为Fixed(2),那么,适合每个给定浮点数的参数应该是什么?

你可以说在每种情况下都是10:

(0.2 + 0.7).toFixed(10) => Result will be "0.9000000000"

该死你打算怎么处理那些9后不需要的零?现在是将其转换为浮动的时候了,以实现您的愿望:

parseFloat((0.2 + 0.7).toFixed(10)) => Result will be 0.9

既然找到了解决方案,那么最好将其作为如下函数提供:

function floatify(number){
           return parseFloat((number).toFixed(10));
        }
    

让我们自己试试吧:函数floatify(数字){return parseFloat((number).toFixed(10));}函数addUp(){var number1=+$(“#number1”).val();var number2=+$(“#number2”).val();var expectedResult=number1+number2;var expectedResult=浮动(number1+number2);$(“#意外结果”).text(意外结果);$(“#expectedResult”).text(expectedResult);}addUp();输入{宽度:50px;}#预期结果{颜色:绿色;}#未预期结果{颜色:红色;}<script src=“https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js“></script><input id=“number1”value=“0.2”onclick=“addUp()”onkeyup=“addUp()”/>+<input id=“number2”value=“0.7”onclick=“addUp()”onkeyup=“addUp()”/>=<p>预期结果:<span id=“expectedResult”></span></p><p>意外结果:<span id=“expectedResult”></span></p>

您可以这样使用:

var x = 0.2 + 0.7;
floatify(x);  => Result: 0.9

正如W3SCHOOLS所建议的,还有另一种解决方案,您可以通过乘法和除法来解决上述问题:

var x = (0.2 * 10 + 0.1 * 10) / 10;       // x will be 0.3

请记住,(0.2+0.1)*10/10根本不起作用,尽管看起来是一样的!我更喜欢第一种解决方案,因为我可以将其作为一个函数应用,将输入浮点转换为精确的输出浮点。

仅供参考,乘法也存在同样的问题,例如0.09*10返回0.8999999999999999。应用flotify函数作为解决方法:flotify(0.09*10)返回0.9