考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
当前回答
从Python 3.5开始,您可以使用math.isclose()函数来测试近似相等性:
>>> import math
>>> math.isclose(0.1 + 0.2, 0.3)
True
>>> 0.1 + 0.2 == 0.3
False
其他回答
除了其他正确答案之外,您可能还需要考虑缩放值以避免浮点运算的问题。
例如:
var result = 1.0 + 2.0; // result === 3.0 returns true
…而不是:
var result = 0.1 + 0.2; // result === 0.3 returns false
在JavaScript中,表达式0.1+0.2===0.3返回false,但幸运的是,浮点中的整数运算是精确的,因此可以通过缩放来避免十进制表示错误。
作为一个实际的例子,为了避免精度至关重要的浮点问题,建议1将钱作为一个整数来处理:2550美分而不是25.50美元。
1 Douglas Crockford:JavaScript:好的部分:附录A——糟糕的部分(第105页)。
由于这篇文章对当前的浮点实现进行了一般性的讨论,我想补充一下,有一些项目正在解决它们的问题。
看看https://posithub.org/例如,它展示了一种称为posit(及其前身unum)的数字类型,它承诺以更少的比特提供更好的精度。如果我的理解是正确的,它也解决了问题中的问题。非常有趣的项目,背后的人是数学家约翰·古斯塔夫森博士。整个过程都是开源的,用C/C++、Python、Julia和C#实现了许多实际的实现(https://hastlayer.com/arithmetics).
二进制浮点数学是这样的。在大多数编程语言中,它基于IEEE 754标准。问题的关键在于,数字以这种格式表示为整数乘以2的幂;分母不是2的幂的有理数(如0.1,即1/10)无法精确表示。
对于标准binary64格式的0.1,表示形式可以完全写为
0.1000000000000000055511151231257827021181583404541015625(十进制),或0x1.999999999999ap-4,采用C99六进制浮点数表示法。
相比之下,有理数0.1(1/10)可以完全写成
0.1(十进制),或0x1.999999999999999…p-4,类似于C99十六进制浮点数,其中。。。表示9的无限序列。
程序中的常数0.2和0.3也将近似于其真实值。恰好最接近0.2的两倍大于有理数0.2,但最接近0.3的两倍小于有理数0.3。0.1和0.2的和最终大于有理数0.3,因此与代码中的常数不一致。
浮点运算问题的一个相当全面的处理是每个计算机科学家都应该知道的浮点运算。有关更容易理解的解释,请参阅floatingpoint-gui.de。
边注:所有位置(以N为基数)数字系统都有精度问题
普通的十进制(以10为基数)数字也有同样的问题,这就是为什么像1/3这样的数字最终会变成0.33333333。。。
您刚刚偶然发现了一个数字(3/10),它很容易用十进制表示,但不适合二进制。它也是双向的(在某种程度上):1/16在十进制中是一个丑陋的数字(0.0625),但在二进制中,它看起来和十进制中的第10000个一样整洁(0.0001)**-如果我们在日常生活中习惯使用基数为2的数字系统,你甚至会看着这个数字,本能地理解你可以通过将某个数字减半,一次又一次地减半来达到这个目的。
当然,这并不是浮点数在内存中的存储方式(它们使用了一种科学的表示法)。然而,它确实说明了一点,二进制浮点精度错误往往会出现,因为我们通常感兴趣的“真实世界”数字往往是十的幂,但这只是因为我们每天使用十进制数字系统。这也是为什么我们会说71%而不是“每7取5”(71%是一个近似值,因为5/7不能用任何小数精确表示)。
所以不:二进制浮点数并没有被破坏,它们只是碰巧和其他N进制一样不完美:)
边注:在编程中使用浮点
实际上,这种精度问题意味着在显示浮点数之前,需要使用舍入函数将浮点数舍入到您感兴趣的小数位数。
您还需要用允许一定公差的比较来替换相等测试,这意味着:
如果(x==y){…}则不执行
相反,如果(abs(x-y)<myToleranceValue){…},则执行此操作。
其中abs是绝对值。需要为您的特定应用程序选择myToleranceValue,这与您准备允许多少“摆动空间”以及您将要比较的最大值(由于精度损失问题)有很大关系。当心您选择的语言中的“epsilon”样式常量。这些值可以用作公差值,但它们的有效性取决于您使用的数字的大小,因为使用大数字的计算可能会超过epsilon阈值。
我可以补充一下吗;人们总是认为这是一个计算机问题,但如果你用手(以10为基数)计算,你就不能得到(1/3+1/3=2/3)=真,除非你有无穷大可以将0.333…加到0.333……就像(1/10+2/10)一样==基数2的3/10问题,您将其截断为0.333+0.333=0.666,并可能将其舍入为0.667,这在技术上也是不准确的。
用三进制数,三分之三不是问题——也许有人会问为什么你的十进制数学被打破了。。。
存储在计算机中的浮点数由两部分组成,一部分是整数,另一部分是基数乘以整数部分的指数。
如果计算机在基数为10的情况下工作,则0.1将是1 x 10⁻¹,0.2将是2 x 10⁻¹,0.3将是3 x 10⁻¹. 整数运算简单而准确,所以加上0.1+0.2显然会得到0.3。
计算机通常不以10为基数工作,而是以2为基数工作。对于某些值,仍然可以得到精确的结果,例如0.5是1 x 2⁻¹和0.25是1 x 2⁻²,将它们相加,结果为3 x 2⁻²或0.75。确切地
问题是数字可以精确地以10为基数表示,但不能以2为基数。这些数字需要四舍五入到最接近的相等值。假设非常常见的IEEE 64位浮点格式,最接近0.1的数字是3602879701896397 x 2⁻⁵⁵, 最接近0.2的数字是7205759403792794 x 2⁻⁵⁵; 将它们相加,得到10808639105689191 x 2⁻⁵⁵, 或精确的十进制值0.30000000000000000444089209850062616169452667236328125。浮点数通常四舍五入以显示。