考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
当前回答
十进制数(如0.1、0.2和0.3)在二进制编码浮点类型中没有精确表示。0.1和0.2的近似值之和与0.3的近似值不同,因此,0.1+0.2==0.3的错误在这里可以更清楚地看到:
#include <stdio.h>
int main() {
printf("0.1 + 0.2 == 0.3 is %s\n", 0.1 + 0.2 == 0.3 ? "true" : "false");
printf("0.1 is %.23f\n", 0.1);
printf("0.2 is %.23f\n", 0.2);
printf("0.1 + 0.2 is %.23f\n", 0.1 + 0.2);
printf("0.3 is %.23f\n", 0.3);
printf("0.3 - (0.1 + 0.2) is %g\n", 0.3 - (0.1 + 0.2));
return 0;
}
输出:
0.1 + 0.2 == 0.3 is false
0.1 is 0.10000000000000000555112
0.2 is 0.20000000000000001110223
0.1 + 0.2 is 0.30000000000000004440892
0.3 is 0.29999999999999998889777
0.3 - (0.1 + 0.2) is -5.55112e-17
为了更可靠地计算这些计算,您需要对浮点值使用基于十进制的表示。C标准没有默认指定此类类型,而是作为技术报告中描述的扩展。
_Decimal32、_Decimal64和_Decimal128类型可能在您的系统上可用(例如,GCC在选定的目标上支持它们,但Clang在OS X上不支持它们)。
其他回答
已经发布了很多好的答案,但我想再补充一个。
并非所有数字都可以通过浮点数/双精度表示例如,在IEEE754浮点标准中,数字“0.2”将以单精度表示为“0.200000003”。
用于在引擎盖下存储实数的模型将浮点数表示为
即使您可以轻松键入0.2,FLT_RADIX和DBL_RADIX都是2;对于使用“IEEE二进制浮点运算标准(ISO/IEC Std 754-1985)”的带有FPU的计算机,不是10。
所以准确地表示这些数字有点困难。即使在没有任何中间计算的情况下显式指定此变量。
在硬件级别,浮点数表示为二进制数的分数(以2为基数)。例如,小数:
0.125
具有1/10+2/100+5/1000的值,并且以相同的方式,具有二进制分数:
0.001
值为0/2+0/4+1/8。这两个分数具有相同的值,唯一的区别是第一个是小数,第二个是二进制分数。
不幸的是,大多数十进制分数不能用二进制分数表示。因此,通常情况下,您给出的浮点数仅近似于存储在机器中的二进制分数。
这个问题在基础10中更容易解决。以分数1/3为例。您可以将其近似为小数:
0.3
或更好,
0.33
或更好,
0.333
无论你写了多少个小数点,结果永远不会精确到1/3,但这是一个总是更接近的估计。
同样,无论使用多少个以2为基数的小数位数,小数值0.1都不能精确地表示为二进制小数。在基数2中,1/10是以下周期数:
0.0001100110011001100110011001100110011001100110011 ...
停止在任何有限数量的比特,你会得到一个近似值。
对于Python,在典型的机器上,53位用于浮点的精度,因此输入小数0.1时存储的值是二进制小数。
0.00011001100110011001100110011001100110011001100110011010
其接近但不完全等于1/10。
很容易忘记存储的值是原始小数的近似值,因为在解释器中显示浮点的方式。Python只显示二进制存储值的十进制近似值。如果Python要输出存储为0.1的二进制近似值的真正十进制值,它将输出:
>>> 0.1
0.1000000000000000055511151231257827021181583404541015625
这比大多数人预期的小数位数要多得多,因此Python显示舍入值以提高可读性:
>>> 0.1
0.1
重要的是要理解,在现实中这是一种错觉:存储的值不完全是1/10,只是在显示器上存储的值被舍入。当您使用这些值执行算术运算时,这一点就会变得明显:
>>> 0.1 + 0.2
0.30000000000000004
这种行为是机器浮点表示的本质所固有的:它不是Python中的错误,也不是代码中的错误。你可以在所有其他语言中观察到相同类型的行为使用硬件支持计算浮点数(尽管有些语言默认情况下不使差异可见或在所有显示模式下不可见)。
另一个令人惊讶的地方就在这一点上。例如,如果尝试将值2.675舍入到两位小数,则会得到
>>> round (2.675, 2)
2.67
round()原语的文档表明它舍入到离零最近的值。由于小数正好在2.67和2.68之间的一半,因此应该可以得到2.68(二进制近似值)。然而,情况并非如此,因为当小数2.675转换为浮点时,它由精确值为:
2.67499999999999982236431605997495353221893310546875
由于近似值比2.68略接近2.67,因此舍入值降低。
如果您处于小数向下舍入的情况,那么应该使用十进制模块。顺便说一下,十进制模块还提供了一种方便的方式来“查看”为任何浮点存储的确切值。
>>> from decimal import Decimal
>>> Decimal (2.675)
>>> Decimal ('2.67499999999999982236431605997495353221893310546875')
0.1不是精确存储在1/10中这一事实的另一个结果是十个值的总和0.1也不等于1.0:
>>> sum = 0.0
>>> for i in range (10):
... sum + = 0.1
...>>> sum
0.9999999999999999
二进制浮点数的算术有很多这样的惊喜。“0.1”的问题将在下文“表示错误”一节中详细解释。有关此类惊喜的更完整列表,请参阅浮点运算的危险。
确实没有简单的答案,但是不要对浮动虚拟数字过分怀疑!在Python中,浮点数操作中的错误是由底层硬件造成的,在大多数机器上,每次操作的错误率不超过1/2*53。这对于大多数任务来说都是非常必要的,但您应该记住,这些操作不是十进制操作,并且对浮点数字的每一次操作都可能会出现新的错误。
尽管存在病态的情况,但对于大多数常见的用例,您只需在显示器上舍入到所需的小数位数,就可以在最后得到预期的结果。有关如何显示浮点数的详细控制,请参阅字符串格式语法以了解str.format()方法的格式规范。
答案的这一部分详细解释了“0.1”的示例,并展示了如何自己对此类案例进行精确分析。我们假设您熟悉浮点数的二进制表示。术语表示错误意味着大多数小数不能用二进制精确表示。这就是为什么Python(或Perl、C、C++、Java、Fortran等)通常不会以十进制显示精确结果的主要原因:
>>> 0.1 + 0.2
0.30000000000000004
为什么?1/10和2/10不能用二进制分数精确表示。然而,今天(2010年7月)所有的机器都遵循IEEE-754标准来计算浮点数。大多数平台使用“IEEE-754双精度”来表示Python浮点。双精度IEEE-754使用53位精度,因此在读取时,计算机尝试将0.1转换为J/2*N形式的最接近分数,J正好是53位的整数。重写:
1/10 ~ = J / (2 ** N)
in :
J ~ = 2 ** N / 10
记住J正好是53位(所以>=2**52但<2**53),N的最佳可能值是56:
>>> 2 ** 52
4503599627370496
>>> 2 ** 53
9007199254740992
>>> 2 ** 56/10
7205759403792793
因此,56是N的唯一可能值,正好为J保留53位。因此,J的最佳可能值是这个商,四舍五入:
>>> q, r = divmod (2 ** 56, 10)
>>> r
6
由于进位大于10的一半,通过四舍五入获得最佳近似值:
>>> q + 1
7205759403792794
因此,“IEEE-754双精度”中1/10的最佳近似值为2**56以上,即:
7205759403792794/72057594037927936
注意,由于四舍五入是向上进行的,结果实际上略大于1/10;如果我们没有四舍五入,这个商会略小于1/10。但无论如何都不是1/10!
因此,计算机从未“看到”1/10:它看到的是上面给出的精确分数,这是使用“IEEE-754”中的双精度浮点数的最佳近似值:
>>>. 1 * 2 ** 56
7205759403792794.0
如果我们将这个分数乘以10**30,我们可以观察到这些值它的30位小数具有很强的权重。
>>> 7205759403792794 * 10 ** 30 // 2 ** 56
100000000000000005551115123125L
这意味着存储在计算机中的精确值近似等于十进制值0.100000000000000005551115123125。在Python 2.7和Python 3.1之前的版本中,Python舍入这些值到17位有效小数,显示“0.10000000000000001”。在当前版本的Python中,显示的值是分数尽可能短的值,当转换回二进制时,给出的表示形式完全相同,只需显示“0.1”。
可以在数字计算机中实现的浮点数学必须使用实数的近似值及其运算。(标准版文件长达50多页,并有一个委员会处理其勘误表和进一步完善。)
这种近似是不同类型的近似的混合,每一种都可以被忽略或仔细考虑,因为其偏离精确性的特定方式。它还涉及到许多硬件和软件层面的明确例外情况,大多数人都会走过来假装没有注意到。
如果您需要无限精度(例如,使用数字π,而不是其许多较短的替代项之一),您应该编写或使用符号数学程序。
但是,如果您同意浮点数学有时在值和逻辑上是模糊的,错误可能会很快累积,并且您可以编写需求和测试来考虑这一点,那么您的代码可以经常通过FPU中的内容。
浮点舍入错误。从每个计算机科学家应该知道的浮点运算:
将无限多的实数压缩成有限位数需要近似表示。虽然有无限多的整数,但在大多数程序中,整数计算的结果可以存储在32位中。相反,给定任何固定位数,大多数使用实数的计算将产生无法使用那么多位数精确表示的量。因此,浮点计算的结果必须经常舍入,以适应其有限表示。这种舍入误差是浮点计算的特征。
十进制数(如0.1、0.2和0.3)在二进制编码浮点类型中没有精确表示。0.1和0.2的近似值之和与0.3的近似值不同,因此,0.1+0.2==0.3的错误在这里可以更清楚地看到:
#include <stdio.h>
int main() {
printf("0.1 + 0.2 == 0.3 is %s\n", 0.1 + 0.2 == 0.3 ? "true" : "false");
printf("0.1 is %.23f\n", 0.1);
printf("0.2 is %.23f\n", 0.2);
printf("0.1 + 0.2 is %.23f\n", 0.1 + 0.2);
printf("0.3 is %.23f\n", 0.3);
printf("0.3 - (0.1 + 0.2) is %g\n", 0.3 - (0.1 + 0.2));
return 0;
}
输出:
0.1 + 0.2 == 0.3 is false
0.1 is 0.10000000000000000555112
0.2 is 0.20000000000000001110223
0.1 + 0.2 is 0.30000000000000004440892
0.3 is 0.29999999999999998889777
0.3 - (0.1 + 0.2) is -5.55112e-17
为了更可靠地计算这些计算,您需要对浮点值使用基于十进制的表示。C标准没有默认指定此类类型,而是作为技术报告中描述的扩展。
_Decimal32、_Decimal64和_Decimal128类型可能在您的系统上可用(例如,GCC在选定的目标上支持它们,但Clang在OS X上不支持它们)。