就OOP程序员所能理解的(没有任何功能编程背景)而言,什么是monad?
它解决了什么问题,最常用的地方是什么?
使现代化
为了澄清我所寻求的理解,假设您正在将一个具有monad的FP应用程序转换为OOP应用程序。如何将monad的职责移植到OOP应用程序?
就OOP程序员所能理解的(没有任何功能编程背景)而言,什么是monad?
它解决了什么问题,最常用的地方是什么?
使现代化
为了澄清我所寻求的理解,假设您正在将一个具有monad的FP应用程序转换为OOP应用程序。如何将monad的职责移植到OOP应用程序?
当前回答
你最近有一篇演讲《Monadologie——关于类型焦虑的专业帮助》(Christopher League,2010年7月12日),这篇演讲对延续和monad的话题非常有趣。这个(幻灯片)演示的视频实际上可以在vimeo上获得。Monad部分开始于37分钟左右,在这段一小时的视频中,从58张幻灯片中的第42张幻灯片开始。
它被称为“函数式编程的主要设计模式”,但示例中使用的语言是Scala,它既是面向对象的又是函数式的。您可以在Debasish Ghosh(2008年3月27日)的博客文章“Monads-在Scala中抽象计算的另一种方法”中阅读更多关于Monad的内容。
如果类型构造函数M支持以下操作,那么它就是monad:
# the return function
def unit[A] (x: A): M[A]
# called "bind" in Haskell
def flatMap[A,B] (m: M[A]) (f: A => M[B]): M[B]
# Other two can be written in term of the first two:
def map[A,B] (m: M[A]) (f: A => B): M[B] =
flatMap(m){ x => unit(f(x)) }
def andThen[A,B] (ma: M[A]) (mb: M[B]): M[B] =
flatMap(ma){ x => mb }
例如(在Scala中):
选项是monad
def unit[A] (x: A): Option[A] = Some(x) def flatMap[A,B](m:Option[A])(f:A =>Option[B]): Option[B] = m match { case None => None case Some(x) => f(x) }
列表为Monad
def unit[A] (x: A): List[A] = List(x) def flatMap[A,B](m:List[A])(f:A =>List[B]): List[B] = m match { case Nil => Nil case x::xs => f(x) ::: flatMap(xs)(f) }
Monad在Scala中非常重要,因为它是为了利用Monad结构而构建的方便语法:
对于Scala的理解:
for {
i <- 1 to 4
j <- 1 to i
k <- 1 to j
} yield i*j*k
由编译器翻译为:
(1 to 4).flatMap { i =>
(1 to i).flatMap { j =>
(1 to j).map { k =>
i*j*k }}}
关键抽象是flatMap,它通过链接绑定计算。flatMap的每次调用都返回相同的数据结构类型(但值不同),作为链中下一个命令的输入。
在上面的代码段中,flatMap将闭包(SomeType)=>List[AanotherType]作为输入,并返回List[Aanother Type]。需要注意的一点是,所有flatMap都采用相同的闭包类型作为输入,并返回与输出相同的类型。
这就是“绑定”计算线程的原因——为了理解,序列中的每一项都必须遵守相同的类型约束。
如果您执行两个操作(可能失败)并将结果传递给第三个,例如:
lookupVenue: String => Option[Venue]
getLoggedInUser: SessionID => Option[User]
reserveTable: (Venue, User) => Option[ConfNo]
但如果不利用Monad,你会得到复杂的OOP代码,比如:
val user = getLoggedInUser(session)
val confirm =
if(!user.isDefined) None
else lookupVenue(name) match {
case None => None
case Some(venue) =>
val confno = reserveTable(venue, user.get)
if(confno.isDefined)
mailTo(confno.get, user.get)
confno
}
而使用Monad,您可以像所有操作一样使用实际类型(地点、用户),并隐藏选项验证内容,这都是因为for语法的平面图:
val confirm = for {
venue <- lookupVenue(name)
user <- getLoggedInUser(session)
confno <- reserveTable(venue, user)
} yield {
mailTo(confno, user)
confno
}
只有当所有三个函数都具有Some[X]时,才会执行屈服部分;任何“无”将直接返回以确认。
So:
Monad允许在函数编程中进行有序计算,这允许我们以一种很好的结构化形式(有点像DSL)对动作序列进行建模。最大的能力来自于将服务于不同目的的monad组合成应用程序中的可扩展抽象的能力。monad对动作的排序和线程化由语言编译器完成,该语言编译器通过闭包的魔力进行转换。
顺便说一句,Monad不是FP中使用的唯一计算模型:
范畴理论提出了许多计算模型。其中计算的Arrow模型莫纳德计算模型计算的应用模型
其他回答
我想说,与monads最接近的OO类比是“命令模式”。
在命令模式中,将普通语句或表达式包装在命令对象中。命令对象公开执行包装语句的执行方法。所以,语句被转换为可以随意传递和执行的第一类对象。可以组合命令,以便通过链接和嵌套命令对象来创建程序对象。
命令由单独的对象调用程序执行。使用命令模式(而不仅仅是执行一系列普通语句)的好处是,不同的调用程序可以将不同的逻辑应用于如何执行命令。
命令模式可用于添加(或删除)宿主语言不支持的语言功能。例如,在没有异常的假设OO语言中,可以通过向命令公开“try”和“throw”方法来添加异常语义。当命令调用throw时,调用程序会回溯到命令列表(或树),直到最后一次“try”调用。相反,您可以通过捕获每个单独命令抛出的所有异常,并将它们转换为错误代码,然后传递给下一个命令,从而从语言中删除异常语义(如果您认为异常是坏的)。
甚至更花哨的执行语义(如事务、非确定性执行或延续)也可以用本机不支持的语言实现。如果你仔细想想,这是一个非常强大的模式。
实际上,命令模式并没有像这样作为通用语言特性使用。将每个语句转换为单独的类的开销将导致无法忍受的样板代码。但原则上,它可以用于解决与在fp中使用monad解决的问题相同的问题。
从实践的角度来看(总结了之前许多回答和相关文章中所说的内容),在我看来,monad的一个基本“目的”(或有用性)是利用递归方法调用(即函数组合)中隐含的依赖关系(即,当f1调用f2调用f3时,f3需要在f1之前的f2之前求值),以自然的方式表示顺序组合,特别是在惰性评估模型的上下文中(即,作为一个普通序列的顺序合成,例如C中的“f3();f2();f1();”),如果你想到f3、f2和f1实际上什么都不返回的情况(它们作为f1(f2(f3))的链接是人为的,纯粹是为了创建序列),那么这个技巧就特别明显了。
当涉及到副作用时,这一点尤其重要,即当某些状态被改变时(如果f1、f2、f3没有副作用,那么它们的求值顺序无关紧要;这是纯函数语言的一个很好的特性,例如能够并行化这些计算)。函数越纯越好。
我认为,从这个狭隘的角度来看,monad可以被视为支持惰性求值的语言的语法糖(只有在绝对必要时才求值,遵循不依赖于代码表示的顺序),并且没有其他表示顺序合成的方法。最终的结果是,“不纯”(即确实有副作用)的代码段可以以命令式的方式自然呈现,但与纯函数(没有副作用)完全分离,纯函数可以延迟求值。
正如这里所警告的,这只是一个方面。
你最近有一篇演讲《Monadologie——关于类型焦虑的专业帮助》(Christopher League,2010年7月12日),这篇演讲对延续和monad的话题非常有趣。这个(幻灯片)演示的视频实际上可以在vimeo上获得。Monad部分开始于37分钟左右,在这段一小时的视频中,从58张幻灯片中的第42张幻灯片开始。
它被称为“函数式编程的主要设计模式”,但示例中使用的语言是Scala,它既是面向对象的又是函数式的。您可以在Debasish Ghosh(2008年3月27日)的博客文章“Monads-在Scala中抽象计算的另一种方法”中阅读更多关于Monad的内容。
如果类型构造函数M支持以下操作,那么它就是monad:
# the return function
def unit[A] (x: A): M[A]
# called "bind" in Haskell
def flatMap[A,B] (m: M[A]) (f: A => M[B]): M[B]
# Other two can be written in term of the first two:
def map[A,B] (m: M[A]) (f: A => B): M[B] =
flatMap(m){ x => unit(f(x)) }
def andThen[A,B] (ma: M[A]) (mb: M[B]): M[B] =
flatMap(ma){ x => mb }
例如(在Scala中):
选项是monad
def unit[A] (x: A): Option[A] = Some(x) def flatMap[A,B](m:Option[A])(f:A =>Option[B]): Option[B] = m match { case None => None case Some(x) => f(x) }
列表为Monad
def unit[A] (x: A): List[A] = List(x) def flatMap[A,B](m:List[A])(f:A =>List[B]): List[B] = m match { case Nil => Nil case x::xs => f(x) ::: flatMap(xs)(f) }
Monad在Scala中非常重要,因为它是为了利用Monad结构而构建的方便语法:
对于Scala的理解:
for {
i <- 1 to 4
j <- 1 to i
k <- 1 to j
} yield i*j*k
由编译器翻译为:
(1 to 4).flatMap { i =>
(1 to i).flatMap { j =>
(1 to j).map { k =>
i*j*k }}}
关键抽象是flatMap,它通过链接绑定计算。flatMap的每次调用都返回相同的数据结构类型(但值不同),作为链中下一个命令的输入。
在上面的代码段中,flatMap将闭包(SomeType)=>List[AanotherType]作为输入,并返回List[Aanother Type]。需要注意的一点是,所有flatMap都采用相同的闭包类型作为输入,并返回与输出相同的类型。
这就是“绑定”计算线程的原因——为了理解,序列中的每一项都必须遵守相同的类型约束。
如果您执行两个操作(可能失败)并将结果传递给第三个,例如:
lookupVenue: String => Option[Venue]
getLoggedInUser: SessionID => Option[User]
reserveTable: (Venue, User) => Option[ConfNo]
但如果不利用Monad,你会得到复杂的OOP代码,比如:
val user = getLoggedInUser(session)
val confirm =
if(!user.isDefined) None
else lookupVenue(name) match {
case None => None
case Some(venue) =>
val confno = reserveTable(venue, user.get)
if(confno.isDefined)
mailTo(confno.get, user.get)
confno
}
而使用Monad,您可以像所有操作一样使用实际类型(地点、用户),并隐藏选项验证内容,这都是因为for语法的平面图:
val confirm = for {
venue <- lookupVenue(name)
user <- getLoggedInUser(session)
confno <- reserveTable(venue, user)
} yield {
mailTo(confno, user)
confno
}
只有当所有三个函数都具有Some[X]时,才会执行屈服部分;任何“无”将直接返回以确认。
So:
Monad允许在函数编程中进行有序计算,这允许我们以一种很好的结构化形式(有点像DSL)对动作序列进行建模。最大的能力来自于将服务于不同目的的monad组合成应用程序中的可扩展抽象的能力。monad对动作的排序和线程化由语言编译器完成,该语言编译器通过闭包的魔力进行转换。
顺便说一句,Monad不是FP中使用的唯一计算模型:
范畴理论提出了许多计算模型。其中计算的Arrow模型莫纳德计算模型计算的应用模型
快速解释:
单体(在函数式编程中)是具有上下文相关行为的函数。
上下文作为参数传递,从先前的monad调用返回。它使它看起来像是同一个参数在后续调用中产生了不同的返回值。
等效值:Monad是其实际参数取决于调用链的过去调用的函数。
典型示例:有状态函数。
FAQ
等等,你说的“行为”是什么意思?
行为是指特定输入的返回值和副作用。
但它们有什么特别之处?
在过程语义中:没有。但它们仅使用纯函数进行建模。这是因为像Haskell这样的纯函数编程语言只使用本身没有状态的纯函数。
但是,国家从何而来?
状态性来自函数调用执行的顺序性。它允许嵌套函数通过多个函数调用拖动某些参数。这将模拟状态。monad只是一种软件模式,它将这些附加参数隐藏在光鲜亮丽的函数的返回值后面,通常称为return和bind。
为什么在Haskell中输入/输出是monad?
因为显示的文本是操作系统中的一种状态。如果多次读取或写入同一文本,则每次调用后操作系统的状态将不相同。相反,输出设备将显示文本输出的3倍。为了对操作系统做出正确的反应,Haskell需要将操作系统状态建模为monad。
从技术上讲,你不需要monad的定义。纯粹的函数式语言可以将“唯一性类型”的概念用于相同的目的。
单子在非功能语言中存在吗?
是的,基本上,解释器是一个复杂的monad,解释每个指令并将其映射到操作系统中的一个新状态。
详细说明:
monad(在函数式编程中)是一种纯函数式软件模式。monad是一个自动维护的环境(一个对象),可以在其中执行一系列纯函数调用。函数结果修改或与该环境交互。
换句话说,monad是一个“函数中继器”或“函数链接器”,它在自动维护的环境中链接和评估参数值。链接的参数值通常是“更新函数”,但实际上可以是任何对象(具有组成容器的方法或容器元素)。monad是在每个求值参数前后执行的“粘合代码”。这个粘合代码函数“bind”应该将每个参数的环境输出集成到原始环境中。
因此,monad以特定于特定monad的实现方式连接所有参数的结果。控制和数据是否或如何在参数之间流动也是特定于实现的。
这种交织执行允许模拟完整的命令式控制流(如GOTO程序中的)或并行执行,仅使用纯函数,还可以在函数调用之间进行副作用、临时状态或异常处理,即使应用的函数不知道外部环境。
编辑:请注意,monads可以以任何类型的控制流图来评估功能链,甚至是非确定性NFA式的方式,因为剩余的链是延迟评估的,可以在链的每个点进行多次评估,这允许在链中进行回溯。
使用monad概念的原因是纯函数范式,它需要一个工具来以纯方式模拟典型的无可指责的建模行为,而不是因为它们做了一些特殊的事情。
面向OOP人群的修道院
在OOP中,monad是一个典型的对象
通常称为return的构造函数,它将值转换为环境的初始实例一种可链接的参数应用程序方法,通常称为bind,它使用作为参数传递的函数的返回环境来维护对象的状态。
有些人还提到了第三个函数join,它是bind的一部分。因为“参数函数”在环境中求值,所以它们的结果嵌套在环境本身中。join是“取消嵌套”结果(使环境变平)的最后一步,用新环境替换环境。
monad可以实现Builder模式,但允许更广泛的使用。
示例(Python)
我认为monad最直观的例子是Python中的关系运算符:
result = 0 <= x == y < 3
您可以看到它是一个monad,因为它必须携带一些布尔状态,而这些状态是单个关系运算符调用所不知道的。
如果您考虑如何在低级别上实现它而不发生短路行为,那么您将得到一个monad实现:
# result = ret(0)
result = (0, true)
# result = result.bind(lambda v: (x, v <= x))
result[1] = result[1] and result[0] <= x
result[0] = x
# result = result.bind(lambda v: (y, v == y))
result[1] = result[1] and result[0] == y
result[0] = y
# result = result.bind(lambda v: (3, v < 3))
result[1] = result[1] and result[0] < 3
result[0] = 3
result = result[1] # not explicit part of a monad
真正的monad最多只能计算一次每个参数。
现在考虑一下“result”变量,就会得到这个链:
ret(0) .bind (lambda v: v <= x) .bind (lambda v: v == y) .bind (lambda v: v < 3)
这里有一个简单的Monads解释和Marvel的案例研究。
单子是用于对有效的依赖函数进行排序的抽象。这里的有效意味着它们以F[a]的形式返回一个类型,例如Option[a],其中Option是F,称为类型构造函数。让我们通过两个简单步骤来了解这一点
下面的函数组合是可传递的。所以从A到C,我可以组成A=>B和B=>C。
A => C = A => B andThen B => C
然而,如果函数返回一个像Option[A]这样的效果类型,即A=>F[B],则合成不起作用,因为我们需要A=>B,但我们有A=>F[B]。我们需要一个特殊的运算符“bind”,它知道如何融合这些返回F[a]的函数。
A => F[C] = A => F[B] bind B => F[C]
“bind”函数是为特定的F定义的。
对于任何A,也有“return”,类型A=>F[A],也为特定的F定义。要成为Monad,F必须定义这两个函数。
因此,我们可以从任何纯函数A=>B构造有效函数A=>F[B],
A => F[B] = A => B andThen return
但给定的F也可以定义自己不透明的“内置”特殊函数,这些函数的类型是用户无法自行定义的(纯语言),例如
“随机”(范围=>随机[Int])“print”(字符串=>IO[()])“尝试…捕捉”等。