我总是发现其他人的创业简介文件对这门语言既有用又有指导意义。此外,虽然我对Bash和Vim进行了一些定制,但对R没有任何定制。

例如,我一直想要的一件事是在窗口终端中输入和输出文本的颜色不同,甚至可能是语法高亮显示。


当前回答

我有这个,更动态的技巧来使用全终端宽度,它试图从COLUMNS环境变量中读取(在Linux上):

tryCatch(
  {options(
      width = as.integer(Sys.getenv("COLUMNS")))},
  error = function(err) {
    write("Can't get your terminal width. Put ``export COLUMNS'' in your \
           .bashrc. Or something. Setting width to 120 chars",
           stderr());
    options(width=120)}
)

这样,即使您调整终端窗口的大小,R也将使用全宽度。

其他回答

我有这个,更动态的技巧来使用全终端宽度,它试图从COLUMNS环境变量中读取(在Linux上):

tryCatch(
  {options(
      width = as.integer(Sys.getenv("COLUMNS")))},
  error = function(err) {
    write("Can't get your terminal width. Put ``export COLUMNS'' in your \
           .bashrc. Or something. Setting width to 120 chars",
           stderr());
    options(width=120)}
)

这样,即使您调整终端窗口的大小,R也将使用全宽度。

options(stringsAsFactors=FALSE)

虽然我的. r配置文件中没有这个,因为它可能会破坏我的合作者的代码,但我希望它是默认的。为什么?

1)字符向量使用更少的内存(但只是很少);

2)更重要的是,我们可以避免这样的问题:

> x <- factor(c("a","b","c"))
> x
[1] a b c
Levels: a b c
> x <- c(x, "d")
> x
[1] "1" "2" "3" "d"

and

> x <- factor(c("a","b","c"))
> x[1:2] <- c("c", "d")
Warning message:
In `[<-.factor`(`*tmp*`, 1:2, value = c("c", "d")) :
  invalid factor level, NAs generated

因子在你需要的时候很有用(比如在图中实现排序),但大多数时候都很麻烦。

我发现两个函数是非常必要的:首先,当我在几个函数上设置debug()并且我已经解决了错误,所以我想要undebug()所有函数-而不是一个接一个。在这里添加的undebug_all()函数作为接受的答案是最好的。

其次,当我定义了许多函数并正在寻找一个特定的变量名时,很难在ls()的所有结果中找到它,包括函数名。这里发布的lsnofun()函数真的很好。

我有一个环境变量R_USER_WORKSPACE,它指向包的顶部目录。在. rprofile中,我定义了一个函数devlib,它设置了工作目录(以便data()工作),并在R子目录中获取所有.R文件。它与上面Hadley的l()函数非常相似。

devlib <- function(pkg) {
  setwd(file.path(Sys.getenv("R_USER_WORKSPACE", "."), deparse(substitute(pkg)), "dev"))
  sapply(list.files("R", pattern=".r$", ignore.case=TRUE, full.names=TRUE), source)
  invisible(NULL)
}

.First <- function() {
  setwd(Sys.getenv("R_USER_WORKSPACE", "."))
  options("repos" = c(CRAN = "http://mirrors.softliste.de/cran/", CRANextra="http://www.stats.ox.ac.uk/pub/RWin"))
}

.Last <- function() update.packages(ask="graphics")

以下是我的想法:

.First <- function () {
  options(device="quartz")
}

.Last <- function () {
  if (!any(commandArgs() == '--no-readline') && interactive()) {
    require(utils)
    try(savehistory(Sys.getenv("R_HISTFILE")))
  }
}

# Slightly more flexible than as.Date
# my.as.Date("2009-01-01") == my.as.Date(2009, 1, 1) == as.Date("2009-01-01")
my.as.Date <- function (a, b=NULL, c=NULL, ...) {
  if (class(a) != "character")
    return (as.Date(sprintf("%d-%02d-%02d", a, b, c)))
  else
    return (as.Date(a))
}

# Some useful aliases
cd <- setwd
pwd <- getwd
lss <- dir
asd <- my.as.Date # examples: asd("2009-01-01") == asd(2009, 1, 1) == as.Date("2009-01-01")
last <- function (x, n=1, ...) tail(x, n=n, ...)

# Set proxy for all web requests
Sys.setenv(http_proxy="http://192.168.0.200:80/")

# Search RPATH for file <fn>.  If found, return full path to it
search.path <- function(fn,
     paths = strsplit(chartr("\\", "/", Sys.getenv("RPATH")), split =
                switch(.Platform$OS.type, windows = ";", ":"))[[1]]) {
  for(d in paths)
     if (file.exists(f <- file.path(d, fn)))
        return(f)
  return(NULL)
}

# If loading in an environment that doesn't respect my RPATH environment
# variable, set it here
if (Sys.getenv("RPATH") == "") {
  Sys.setenv(RPATH=file.path(path.expand("~"), "Library", "R", "source"))
}

# Load commonly used functions
if (interactive())
  source(search.path("afazio.r"))

# If no R_HISTFILE environment variable, set default
if (Sys.getenv("R_HISTFILE") == "") {
  Sys.setenv(R_HISTFILE=file.path("~", ".Rhistory"))
}

# Override q() to not save by default.
# Same as saying q("no")
q <- function (save="no", ...) {
  quit(save=save, ...)
}

# ---------- My Environments ----------
#
# Rather than starting R from within different directories, I prefer to
# switch my "environment" easily with these functions.  An "environment" is
# simply a directory that contains analysis of a particular topic.
# Example usage:
# > load.env("markets")  # Load US equity markets analysis environment
# > # ... edit some .r files in my environment
# > reload()             # Re-source .r/.R files in my environment
#
# On next startup of R, I will automatically be placed into the last
# environment I entered

# My current environment
.curr.env = NULL

# File contains name of the last environment I entered
.last.env.file = file.path(path.expand("~"), ".Rlastenv")

# Parent directory where all of my "environment"s are contained
.parent.env.dir = file.path(path.expand("~"), "Analysis")

# Create parent directory if it doesn't already exist
if (!file.exists(.parent.env.dir))
  dir.create(.parent.env.dir)

load.env <- function (string, save=TRUE) {
  # Load all .r/.R files in <.parent.env.dir>/<string>/
  cd(file.path(.parent.env.dir, string))
  for (file in lss()) {
    if (substr(file, nchar(file)-1, nchar(file)+1) %in% c(".r", ".R"))
      source(file)
  }
  .curr.env <<- string
  # Save current environment name to file
  if (save == TRUE) writeLines(.curr.env, .last.env.file)
  # Let user know environment switch was successful
  print (paste(" -- in ", string, " environment -- "))
}

# "reload" current environment.
reload <- resource <- function () {
  if (!is.null(.curr.env))
    load.env(.curr.env, save=FALSE)
  else
    print (" -- not in environment -- ")
}

# On startup, go straight to the environment I was last working in
if (interactive() && file.exists(.last.env.file)) {
  load.env(readLines(.last.env.file))
}