我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。


当前回答

你可以用pandas.DataFrame这样做。相关系数:

import pandas as pd
a = [[1, 2, 3],
     [5, 6, 9],
     [5, 6, 11],
     [5, 6, 13],
     [5, 3, 13]]
df = pd.DataFrame(data=a)
df.corr()

这给了

          0         1         2
0  1.000000  0.745601  0.916579
1  0.745601  1.000000  0.544248
2  0.916579  0.544248  1.000000

其他回答

与其依赖numpy/scipy,我认为我的答案应该是最容易编码和理解计算Pearson相关系数(PCC)的步骤。

import math

# calculates the mean
def mean(x):
    sum = 0.0
    for i in x:
         sum += i
    return sum / len(x) 

# calculates the sample standard deviation
def sampleStandardDeviation(x):
    sumv = 0.0
    for i in x:
         sumv += (i - mean(x))**2
    return math.sqrt(sumv/(len(x)-1))

# calculates the PCC using both the 2 functions above
def pearson(x,y):
    scorex = []
    scorey = []

    for i in x: 
        scorex.append((i - mean(x))/sampleStandardDeviation(x)) 

    for j in y:
        scorey.append((j - mean(y))/sampleStandardDeviation(y))

# multiplies both lists together into 1 list (hence zip) and sums the whole list   
    return (sum([i*j for i,j in zip(scorex,scorey)]))/(len(x)-1)

PCC的意义基本上是向你展示两个变量/列表的相关性有多强。 需要注意的是,PCC值的范围是-1到1。 0到1之间的值表示正相关。 0值=最高变异(没有任何相关性)。 -1到0之间的值表示负相关。

嗯,很多回复的代码都很长,很难读…

我建议在处理数组时使用numpy及其漂亮的特性:

import numpy as np
def pcc(X, Y):
   ''' Compute Pearson Correlation Coefficient. '''
   # Normalise X and Y
   X -= X.mean(0)
   Y -= Y.mean(0)
   # Standardise X and Y
   X /= X.std(0)
   Y /= Y.std(0)
   # Compute mean product
   return np.mean(X*Y)

# Using it on a random example
from random import random
X = np.array([random() for x in xrange(100)])
Y = np.array([random() for x in xrange(100)])
pcc(X, Y)

计算相关:

相关性-衡量两个不同变量的相似性

使用皮尔逊相关

from scipy.stats import pearsonr
# final_data is the dataframe with n set of columns
pearson_correlation = final_data.corr(method='pearson')
pearson_correlation
# print correlation of n*n column

使用斯皮尔曼相关

from scipy.stats import spearmanr
# final_data is the dataframe with n set of columns
spearman_correlation = final_data.corr(method='spearman')
spearman_correlation
# print correlation of n*n column

使用Kendall相关

kendall_correlation=final_data.corr(method='kendall')
kendall_correlation

从Python 3.10开始,Pearson的相关系数(statistics.correlation)可以直接在标准库中获得:

from statistics import correlation

# a = [15, 12, 8, 8, 7, 7, 7, 6, 5, 3]
# b = [10, 25, 17, 11, 13, 17, 20, 13, 9, 15]
correlation(a, b)
# 0.1449981545806852
def pearson(x,y):
  n=len(x)
  vals=range(n)

  sumx=sum([float(x[i]) for i in vals])
  sumy=sum([float(y[i]) for i in vals])

  sumxSq=sum([x[i]**2.0 for i in vals])
  sumySq=sum([y[i]**2.0 for i in vals])

  pSum=sum([x[i]*y[i] for i in vals])
  # Calculating Pearson correlation
  num=pSum-(sumx*sumy/n)
  den=((sumxSq-pow(sumx,2)/n)*(sumySq-pow(sumy,2)/n))**.5
  if den==0: return 0
  r=num/den
  return r