我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。
当前回答
你可以看看这篇文章。这是一个使用pandas库(适用于Python)根据多个文件的历史外汇货币对数据计算相关性的示例,然后使用seaborn库生成热图图。
http://www.tradinggeeks.net/2015/08/calculating-correlation-in-python/
其他回答
对此,我有一个非常简单易懂的解决方案。对于两个长度相等的数组,Pearson系数可以很容易地计算如下:
def manual_pearson(a,b):
"""
Accepts two arrays of equal length, and computes correlation coefficient.
Numerator is the sum of product of (a - a_avg) and (b - b_avg),
while denominator is the product of a_std and b_std multiplied by
length of array.
"""
a_avg, b_avg = np.average(a), np.average(b)
a_stdev, b_stdev = np.std(a), np.std(b)
n = len(a)
denominator = a_stdev * b_stdev * n
numerator = np.sum(np.multiply(a-a_avg, b-b_avg))
p_coef = numerator/denominator
return p_coef
计算相关:
相关性-衡量两个不同变量的相似性
使用皮尔逊相关
from scipy.stats import pearsonr
# final_data is the dataframe with n set of columns
pearson_correlation = final_data.corr(method='pearson')
pearson_correlation
# print correlation of n*n column
使用斯皮尔曼相关
from scipy.stats import spearmanr
# final_data is the dataframe with n set of columns
spearman_correlation = final_data.corr(method='spearman')
spearman_correlation
# print correlation of n*n column
使用Kendall相关
kendall_correlation=final_data.corr(method='kendall')
kendall_correlation
你可以用pandas.DataFrame这样做。相关系数:
import pandas as pd
a = [[1, 2, 3],
[5, 6, 9],
[5, 6, 11],
[5, 6, 13],
[5, 3, 13]]
df = pd.DataFrame(data=a)
df.corr()
这给了
0 1 2
0 1.000000 0.745601 0.916579
1 0.745601 1.000000 0.544248
2 0.916579 0.544248 1.000000
下面是mkh答案的一个变体,比它运行得快得多,还有scipy.stats。皮尔逊,使用numba。
import numba
@numba.jit
def corr(data1, data2):
M = data1.size
sum1 = 0.
sum2 = 0.
for i in range(M):
sum1 += data1[i]
sum2 += data2[i]
mean1 = sum1 / M
mean2 = sum2 / M
var_sum1 = 0.
var_sum2 = 0.
cross_sum = 0.
for i in range(M):
var_sum1 += (data1[i] - mean1) ** 2
var_sum2 += (data2[i] - mean2) ** 2
cross_sum += (data1[i] * data2[i])
std1 = (var_sum1 / M) ** .5
std2 = (var_sum2 / M) ** .5
cross_mean = cross_sum / M
return (cross_mean - mean1 * mean2) / (std1 * std2)
你可以看看这篇文章。这是一个使用pandas库(适用于Python)根据多个文件的历史外汇货币对数据计算相关性的示例,然后使用seaborn库生成热图图。
http://www.tradinggeeks.net/2015/08/calculating-correlation-in-python/
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录