我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。


当前回答

Pearson coefficient calculation using pandas in python: I would suggest trying this approach since your data contains lists. It will be easy to interact with your data and manipulate it from the console since you can visualise your data structure and update it as you wish. You can also export the data set and save it and add new data out of the python console for later analysis. This code is simpler and contains less lines of code. I am assuming you need a few quick lines of code to screen your data for further analysis

例子:

data = {'list 1':[2,4,6,8],'list 2':[4,16,36,64]}

import pandas as pd #To Convert your lists to pandas data frames convert your lists into pandas dataframes

df = pd.DataFrame(data, columns = ['list 1','list 2'])

from scipy import stats # For in-built method to get PCC

pearson_coef, p_value = stats.pearsonr(df["list 1"], df["list 2"]) #define the columns to perform calculations on
print("Pearson Correlation Coefficient: ", pearson_coef, "and a P-value of:", p_value) # Results 

但是,在分析之前,你没有发布你的数据给我看数据集的大小或可能需要的转换。

其他回答

你可以看看scipy.stats:

from pydoc import help
from scipy.stats.stats import pearsonr
help(pearsonr)

>>>
Help on function pearsonr in module scipy.stats.stats:

pearsonr(x, y)
 Calculates a Pearson correlation coefficient and the p-value for testing
 non-correlation.

 The Pearson correlation coefficient measures the linear relationship
 between two datasets. Strictly speaking, Pearson's correlation requires
 that each dataset be normally distributed. Like other correlation
 coefficients, this one varies between -1 and +1 with 0 implying no
 correlation. Correlations of -1 or +1 imply an exact linear
 relationship. Positive correlations imply that as x increases, so does
 y. Negative correlations imply that as x increases, y decreases.

 The p-value roughly indicates the probability of an uncorrelated system
 producing datasets that have a Pearson correlation at least as extreme
 as the one computed from these datasets. The p-values are not entirely
 reliable but are probably reasonable for datasets larger than 500 or so.

 Parameters
 ----------
 x : 1D array
 y : 1D array the same length as x

 Returns
 -------
 (Pearson's correlation coefficient,
  2-tailed p-value)

 References
 ----------
 http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

如果你不喜欢安装scipy,我使用了这个快速的hack,稍微修改了Programming Collective Intelligence:

def pearsonr(x, y):
  # Assume len(x) == len(y)
  n = len(x)
  sum_x = float(sum(x))
  sum_y = float(sum(y))
  sum_x_sq = sum(xi*xi for xi in x)
  sum_y_sq = sum(yi*yi for yi in y)
  psum = sum(xi*yi for xi, yi in zip(x, y))
  num = psum - (sum_x * sum_y/n)
  den = pow((sum_x_sq - pow(sum_x, 2) / n) * (sum_y_sq - pow(sum_y, 2) / n), 0.5)
  if den == 0: return 0
  return num / den
def correlation_score(y_true, y_pred):
    """Scores the predictions according to the competition rules. 
    
    It is assumed that the predictions are not constant.
    
    Returns the average of each sample's Pearson correlation coefficient"""
    
    y2 = y_pred.copy()
    y2 -= y2.mean(axis=0);    y2 /= y2.std(axis=0) 
    y1 = y_true.copy(); 
    y1 -= y1.mean(axis=0);    y1 /= y1.std(axis=0) 
        
    c = (y1*y2).mean().mean()# Correlation for rescaled matrices is just matrix product and average 
        
    return c

下面的代码是对该定义的直接解释:

import math

def average(x):
    assert len(x) > 0
    return float(sum(x)) / len(x)

def pearson_def(x, y):
    assert len(x) == len(y)
    n = len(x)
    assert n > 0
    avg_x = average(x)
    avg_y = average(y)
    diffprod = 0
    xdiff2 = 0
    ydiff2 = 0
    for idx in range(n):
        xdiff = x[idx] - avg_x
        ydiff = y[idx] - avg_y
        diffprod += xdiff * ydiff
        xdiff2 += xdiff * xdiff
        ydiff2 += ydiff * ydiff

    return diffprod / math.sqrt(xdiff2 * ydiff2)

测试:

print pearson_def([1,2,3], [1,5,7])

返回

0.981980506062

这与Excel,这个计算器,SciPy(也是NumPy)一致,分别返回0.981980506和0.9819805060619657,和0.98198050606196574。

R:

> cor( c(1,2,3), c(1,5,7))
[1] 0.9819805

编辑:修正了一个由评论者指出的错误。

您可能想知道如何在寻找特定方向的相关性(负相关或正相关)的上下文中解释您的概率。这是我写的一个函数。它甚至可能是正确的!

这是基于我从http://www.vassarstats.net/rsig.html和http://en.wikipedia.org/wiki/Student%27s_t_distribution上收集到的信息,感谢这里发布的其他答案。

# Given (possibly random) variables, X and Y, and a correlation direction,
# returns:
#  (r, p),
# where r is the Pearson correlation coefficient, and p is the probability
# that there is no correlation in the given direction.
#
# direction:
#  if positive, p is the probability that there is no positive correlation in
#    the population sampled by X and Y
#  if negative, p is the probability that there is no negative correlation
#  if 0, p is the probability that there is no correlation in either direction
def probabilityNotCorrelated(X, Y, direction=0):
    x = len(X)
    if x != len(Y):
        raise ValueError("variables not same len: " + str(x) + ", and " + \
                         str(len(Y)))
    if x < 6:
        raise ValueError("must have at least 6 samples, but have " + str(x))
    (corr, prb_2_tail) = stats.pearsonr(X, Y)

    if not direction:
        return (corr, prb_2_tail)

    prb_1_tail = prb_2_tail / 2
    if corr * direction > 0:
        return (corr, prb_1_tail)

    return (corr, 1 - prb_1_tail)