我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

下面是一个简单易懂的递归c++解决方案:

#include<vector>
using namespace std;

template<typename T>
void ksubsets(const vector<T>& arr, unsigned left, unsigned idx,
    vector<T>& lst, vector<vector<T>>& res)
{
    if (left < 1) {
        res.push_back(lst);
        return;
    }
    for (unsigned i = idx; i < arr.size(); i++) {
        lst.push_back(arr[i]);
        ksubsets(arr, left - 1, i + 1, lst, res);
        lst.pop_back();
    }
}

int main()
{
    vector<int> arr = { 1, 2, 3, 4, 5 };
    unsigned left = 3;
    vector<int> lst;
    vector<vector<int>> res;
    ksubsets<int>(arr, left, 0, lst, res);
    // now res has all the combinations
}

其他回答

我们可以用比特的概念来做这个。假设我们有一个字符串“abc”,我们想要所有长度为2的元素的组合(即“ab”,“ac”,“bc”)。

我们可以在1到2^n(排他性)的数字中找到集合位。这里是1到7,只要我们设置了bits = 2,我们就可以从string中输出相应的值。

例如:

1 - 001 二零零一 3011 ->印刷ab (str[0], str[1]) 四到一百。 5 - 101 ->打印ac (str[0], str[2]) 6 - 110 ->印刷ab (str[1], str[2]) 7 - 111。

代码示例:

public class StringCombinationK {   
    static void combk(String s , int k){
        int n = s.length();
        int num = 1<<n;
        int j=0;
        int count=0;

        for(int i=0;i<num;i++){
            if (countSet(i)==k){
                setBits(i,j,s);
                count++;
                System.out.println();
            }
        }

        System.out.println(count);
    }

    static void setBits(int i,int j,String s){ // print the corresponding string value,j represent the index of set bit
        if(i==0){
            return;
        }

        if(i%2==1){
            System.out.print(s.charAt(j));                  
        }

        setBits(i/2,j+1,s);
    }

    static int countSet(int i){ //count number of set bits
        if( i==0){
            return 0;
        }

        return (i%2==0? 0:1) + countSet(i/2);
    }

    public static void main(String[] arhs){
        String s = "abcdefgh";
        int k=3;
        combk(s,k);
    }
}

我有一个用于project euler的排列算法,用python编写:

def missing(miss,src):
    "Returns the list of items in src not present in miss"
    return [i for i in src if i not in miss]


def permutation_gen(n,l):
    "Generates all the permutations of n items of the l list"
    for i in l:
        if n<=1: yield [i]
        r = [i]
        for j in permutation_gen(n-1,missing([i],l)):  yield r+j

If

n<len(l) 

你应该有所有你需要的组合,没有重复,你需要吗?

它是一个生成器,所以你可以这样使用它:

for comb in permutation_gen(3,list("ABCDEFGH")):
    print comb 

这里你有一个用c#编写的该算法的惰性评估版本:

    static bool nextCombination(int[] num, int n, int k)
    {
        bool finished, changed;

        changed = finished = false;

        if (k > 0)
        {
            for (int i = k - 1; !finished && !changed; i--)
            {
                if (num[i] < (n - 1) - (k - 1) + i)
                {
                    num[i]++;
                    if (i < k - 1)
                    {
                        for (int j = i + 1; j < k; j++)
                        {
                            num[j] = num[j - 1] + 1;
                        }
                    }
                    changed = true;
                }
                finished = (i == 0);
            }
        }

        return changed;
    }

    static IEnumerable Combinations<T>(IEnumerable<T> elements, int k)
    {
        T[] elem = elements.ToArray();
        int size = elem.Length;

        if (k <= size)
        {
            int[] numbers = new int[k];
            for (int i = 0; i < k; i++)
            {
                numbers[i] = i;
            }

            do
            {
                yield return numbers.Select(n => elem[n]);
            }
            while (nextCombination(numbers, size, k));
        }
    }

及测试部分:

    static void Main(string[] args)
    {
        int k = 3;
        var t = new[] { "dog", "cat", "mouse", "zebra"};

        foreach (IEnumerable<string> i in Combinations(t, k))
        {
            Console.WriteLine(string.Join(",", i));
        }
    }

希望这对你有帮助!


另一种版本,迫使所有前k个组合首先出现,然后是所有前k+1个组合,然后是所有前k+2个组合,等等。这意味着如果你对数组进行排序,最重要的在最上面,它会把它们逐渐扩展到下一个——只有在必须这样做的时候。

private static bool NextCombinationFirstsAlwaysFirst(int[] num, int n, int k)
{
    if (k > 1 && NextCombinationFirstsAlwaysFirst(num, num[k - 1], k - 1))
        return true;

    if (num[k - 1] + 1 == n)
        return false;

    ++num[k - 1];
    for (int i = 0; i < k - 1; ++i)
        num[i] = i;

    return true;
}

例如,如果你在k=3, n=5上运行第一个方法("nextCombination"),你会得到:

0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4

但如果你跑

int[] nums = new int[k];
for (int i = 0; i < k; ++i)
    nums[i] = i;
do
{
    Console.WriteLine(string.Join(" ", nums));
}
while (NextCombinationFirstsAlwaysFirst(nums, n, k));

你会得到这个(为了清晰起见,我添加了空行):

0 1 2

0 1 3
0 2 3
1 2 3

0 1 4
0 2 4
1 2 4
0 3 4
1 3 4
2 3 4

它只在必须添加时才添加“4”,而且在添加“4”之后,它只在必须添加时再添加“3”(在执行01、02、12之后)。

在c++中,以下例程将生成range [first,last)之间的长度距离(first,k)的所有组合:

#include <algorithm>

template <typename Iterator>
bool next_combination(const Iterator first, Iterator k, const Iterator last)
{
   /* Credits: Mark Nelson http://marknelson.us */
   if ((first == last) || (first == k) || (last == k))
      return false;
   Iterator i1 = first;
   Iterator i2 = last;
   ++i1;
   if (last == i1)
      return false;
   i1 = last;
   --i1;
   i1 = k;
   --i2;
   while (first != i1)
   {
      if (*--i1 < *i2)
      {
         Iterator j = k;
         while (!(*i1 < *j)) ++j;
         std::iter_swap(i1,j);
         ++i1;
         ++j;
         i2 = k;
         std::rotate(i1,j,last);
         while (last != j)
         {
            ++j;
            ++i2;
         }
         std::rotate(k,i2,last);
         return true;
      }
   }
   std::rotate(first,k,last);
   return false;
}

它可以这样使用:

#include <string>
#include <iostream>

int main()
{
    std::string s = "12345";
    std::size_t comb_size = 3;
    do
    {
        std::cout << std::string(s.begin(), s.begin() + comb_size) << std::endl;
    } while (next_combination(s.begin(), s.begin() + comb_size, s.end()));

    return 0;
}

这将打印以下内容:

123
124
125
134
135
145
234
235
245
345

Haskell中的简单递归算法

import Data.List

combinations 0 lst = [[]]
combinations n lst = do
    (x:xs) <- tails lst
    rest   <- combinations (n-1) xs
    return $ x : rest

我们首先定义特殊情况,即选择零元素。它产生一个单一的结果,这是一个空列表(即一个包含空列表的列表)。

对于n> 0, x遍历列表中的每一个元素xs是x之后的每一个元素。

Rest通过对组合的递归调用从xs中选取n - 1个元素。该函数的最终结果是一个列表,其中每个元素都是x: rest(即对于x和rest的每个不同值,x为头部,rest为尾部的列表)。

> combinations 3 "abcde"
["abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde"]

当然,由于Haskell是懒惰的,列表是根据需要逐渐生成的,因此您可以部分计算指数级的大组合。

> let c = combinations 8 "abcdefghijklmnopqrstuvwxyz"
> take 10 c
["abcdefgh","abcdefgi","abcdefgj","abcdefgk","abcdefgl","abcdefgm","abcdefgn",
 "abcdefgo","abcdefgp","abcdefgq"]