我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
短快C实现
#include <stdio.h>
void main(int argc, char *argv[]) {
const int n = 6; /* The size of the set; for {1, 2, 3, 4} it's 4 */
const int p = 4; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */
int i = 0;
for (int j = 0; j <= n; j++) comb[j] = 0;
while (i >= 0) {
if (comb[i] < n + i - p + 1) {
comb[i]++;
if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); }
else { comb[++i] = comb[i - 1]; }
} else i--; }
}
要查看它有多快,请使用这段代码并测试它
#include <time.h>
#include <stdio.h>
void main(int argc, char *argv[]) {
const int n = 32; /* The size of the set; for {1, 2, 3, 4} it's 4 */
const int p = 16; /* The size of the subsets; for {1, 2}, {1, 3}, ... it's 2 */
int comb[40] = {0}; /* comb[i] is the index of the i-th element in the combination */
int c = 0; int i = 0;
for (int j = 0; j <= n; j++) comb[j] = 0;
while (i >= 0) {
if (comb[i] < n + i - p + 1) {
comb[i]++;
/* if (i == p - 1) { for (int j = 0; j < p; j++) printf("%d ", comb[j]); printf("\n"); } */
if (i == p - 1) c++;
else { comb[++i] = comb[i - 1]; }
} else i--; }
printf("%d!%d == %d combination(s) in %15.3f second(s)\n ", p, n, c, clock()/1000.0);
}
使用cmd.exe (windows)测试:
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
c:\Program Files\lcc\projects>combination
16!32 == 601080390 combination(s) in 5.781 second(s)
c:\Program Files\lcc\projects>
祝你有愉快的一天。
其他回答
简短的python代码,产生索引位置
def yield_combos(n,k):
# n is set size, k is combo size
i = 0
a = [0]*k
while i > -1:
for j in range(i+1, k):
a[j] = a[j-1]+1
i=j
yield a
while a[i] == i + n - k:
i -= 1
a[i] += 1
我想提出我的解决方案。在next中没有递归调用,也没有嵌套循环。 代码的核心是next()方法。
public class Combinations {
final int pos[];
final List<Object> set;
public Combinations(List<?> l, int k) {
pos = new int[k];
set=new ArrayList<Object>(l);
reset();
}
public void reset() {
for (int i=0; i < pos.length; ++i) pos[i]=i;
}
public boolean next() {
int i = pos.length-1;
for (int maxpos = set.size()-1; pos[i] >= maxpos; --maxpos) {
if (i==0) return false;
--i;
}
++pos[i];
while (++i < pos.length)
pos[i]=pos[i-1]+1;
return true;
}
public void getSelection(List<?> l) {
@SuppressWarnings("unchecked")
List<Object> ll = (List<Object>)l;
if (ll.size()!=pos.length) {
ll.clear();
for (int i=0; i < pos.length; ++i)
ll.add(set.get(pos[i]));
}
else {
for (int i=0; i < pos.length; ++i)
ll.set(i, set.get(pos[i]));
}
}
}
用法示例:
static void main(String[] args) {
List<Character> l = new ArrayList<Character>();
for (int i=0; i < 32; ++i) l.add((char)('a'+i));
Combinations comb = new Combinations(l,5);
int n=0;
do {
++n;
comb.getSelection(l);
//Log.debug("%d: %s", n, l.toString());
} while (comb.next());
Log.debug("num = %d", n);
}
我们可以用比特的概念来做这个。假设我们有一个字符串“abc”,我们想要所有长度为2的元素的组合(即“ab”,“ac”,“bc”)。
我们可以在1到2^n(排他性)的数字中找到集合位。这里是1到7,只要我们设置了bits = 2,我们就可以从string中输出相应的值。
例如:
1 - 001 二零零一 3011 ->印刷ab (str[0], str[1]) 四到一百。 5 - 101 ->打印ac (str[0], str[2]) 6 - 110 ->印刷ab (str[1], str[2]) 7 - 111。
代码示例:
public class StringCombinationK {
static void combk(String s , int k){
int n = s.length();
int num = 1<<n;
int j=0;
int count=0;
for(int i=0;i<num;i++){
if (countSet(i)==k){
setBits(i,j,s);
count++;
System.out.println();
}
}
System.out.println(count);
}
static void setBits(int i,int j,String s){ // print the corresponding string value,j represent the index of set bit
if(i==0){
return;
}
if(i%2==1){
System.out.print(s.charAt(j));
}
setBits(i/2,j+1,s);
}
static int countSet(int i){ //count number of set bits
if( i==0){
return 0;
}
return (i%2==0? 0:1) + countSet(i/2);
}
public static void main(String[] arhs){
String s = "abcdefgh";
int k=3;
combk(s,k);
}
}
用c#的另一个解决方案:
static List<List<T>> GetCombinations<T>(List<T> originalItems, int combinationLength)
{
if (combinationLength < 1)
{
return null;
}
return CreateCombinations<T>(new List<T>(), 0, combinationLength, originalItems);
}
static List<List<T>> CreateCombinations<T>(List<T> initialCombination, int startIndex, int length, List<T> originalItems)
{
List<List<T>> combinations = new List<List<T>>();
for (int i = startIndex; i < originalItems.Count - length + 1; i++)
{
List<T> newCombination = new List<T>(initialCombination);
newCombination.Add(originalItems[i]);
if (length > 1)
{
List<List<T>> newCombinations = CreateCombinations(newCombination, i + 1, length - 1, originalItems);
combinations.AddRange(newCombinations);
}
else
{
combinations.Add(newCombination);
}
}
return combinations;
}
用法示例:
List<char> initialArray = new List<char>() { 'a','b','c','d'};
int combinationLength = 3;
List<List<char>> combinations = GetCombinations(initialArray, combinationLength);
这是一个简单的JS解决方案:
function getAllCombinations(n, k, f1) { indexes = Array(k); for (let i =0; i< k; i++) { indexes[i] = i; } var total = 1; f1(indexes); while (indexes[0] !== n-k) { total++; getNext(n, indexes); f1(indexes); } return {total}; } function getNext(n, vec) { const k = vec.length; vec[k-1]++; for (var i=0; i<k; i++) { var currentIndex = k-i-1; if (vec[currentIndex] === n - i) { var nextIndex = k-i-2; vec[nextIndex]++; vec[currentIndex] = vec[nextIndex] + 1; } } for (var i=1; i<k; i++) { if (vec[i] === n - (k-i - 1)) { vec[i] = vec[i-1] + 1; } } return vec; } let start = new Date(); let result = getAllCombinations(10, 3, indexes => console.log(indexes)); let runTime = new Date() - start; console.log({ result, runTime });