在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

监督式学习

在这种情况下,用于训练网络的每个输入模式都是 与输出模式相关联,它是目标或所需的 模式。在学习过程中假定有老师在场 过程,当对网络的计算结果进行比较时 输出和正确的预期输出,以确定误差。的 错误可以用来更改网络参数,从而导致 性能的提高。

无监督学习

在这种学习方法中,目标输出不会呈现给机器 网络。这就好像没有老师来呈现所渴望的 模式,因此,系统通过发现和学习自己 适应输入模式中的结构特征。

其他回答

监督式学习

在这种情况下,用于训练网络的每个输入模式都是 与输出模式相关联,它是目标或所需的 模式。在学习过程中假定有老师在场 过程,当对网络的计算结果进行比较时 输出和正确的预期输出,以确定误差。的 错误可以用来更改网络参数,从而导致 性能的提高。

无监督学习

在这种学习方法中,目标输出不会呈现给机器 网络。这就好像没有老师来呈现所渴望的 模式,因此,系统通过发现和学习自己 适应输入模式中的结构特征。

例如,训练神经网络通常是监督学习:你告诉网络你输入的特征向量对应于哪个类。

聚类是无监督学习:你让算法决定如何将样本分组到具有共同属性的类中。

另一个无监督学习的例子是Kohonen的自组织地图。

我尽量简单点。

监督学习:在这种学习技术中,我们得到一个数据集,系统已经知道该数据集的正确输出。这里,我们的系统通过预测自己的值来学习。然后,它通过使用代价函数来检查其预测与实际输出的接近程度,从而进行准确性检查。

无监督学习:在这种方法中,我们很少或根本不知道我们的结果是什么。因此,我们从不知道变量影响的数据中推导出结构。 我们根据数据中变量之间的关系对数据进行聚类,从而形成结构。 在这里,我们没有基于预测的反馈。

监督式学习

训练数据包括输入向量的示例及其相应的目标向量的应用被称为监督学习问题。

无监督学习

在其他模式识别问题中,训练数据由一组输入向量x组成,没有任何对应的目标值。这种无监督学习问题的目标可能是在数据中发现相似的例子组,在这里它被称为聚类

模式识别和机器学习(Bishop, 2006)

在监督学习中,我们知道输入和输出应该是什么。例如,给定一组汽车。我们得找出哪些是红的,哪些是蓝的。

然而,无监督学习是指我们必须在很少或没有任何关于输出应该如何的想法的情况下找到答案。例如,学习者可以建立一个模型,根据面部模式和单词(如“你在笑什么?”)的相关性来检测人们何时在微笑。