在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?
当前回答
监督式学习
在这种情况下,用于训练网络的每个输入模式都是 与输出模式相关联,它是目标或所需的 模式。在学习过程中假定有老师在场 过程,当对网络的计算结果进行比较时 输出和正确的预期输出,以确定误差。的 错误可以用来更改网络参数,从而导致 性能的提高。
无监督学习
在这种学习方法中,目标输出不会呈现给机器 网络。这就好像没有老师来呈现所渴望的 模式,因此,系统通过发现和学习自己 适应输入模式中的结构特征。
其他回答
监督式学习:
监督学习算法分析训练数据并产生推断函数,该函数可用于映射新的示例。
我们提供训练数据,我们知道对某个输入的正确输出 我们知道输入和输出之间的关系
问题类别:
回归:预测连续输出中的结果=>将输入变量映射到某个连续函数。
例子:
给一个人的照片,预测他的年龄
分类:在离散输出中预测结果=>映射输入变量到离散类别
例子:
这个肿瘤癌变了吗?
无监督学习:
无监督学习从未被标记、分类或分类的测试数据中学习。无监督学习识别数据中的共性,并根据每个新数据中这些共性的存在与否做出反应。
我们可以根据数据中变量之间的关系对数据进行聚类,从而推导出这种结构。 基于预测结果没有反馈。
问题类别:
聚类:是对一组对象进行分组,使同一组(称为聚类)中的对象彼此之间(在某种意义上)比其他组(聚类)中的对象更相似。
例子:
收集100万个不同的基因,找到一种方法,自动将这些基因分组,这些基因在某种程度上是相似的,或因不同的变量(如寿命、位置、角色等)而相关。
这里列出了常用的用例。
数据挖掘中分类和聚类的区别?
引用:
Supervised_learning
Unsupervised_learning
来自coursera的机器学习
走向数据科学
我可以给你们举个例子。
假设您需要识别哪些车辆是汽车,哪些是摩托车。
在监督学习的情况下,你的输入(训练)数据集需要被标记,也就是说,对于你的输入(训练)数据集中的每个输入元素,你应该指定它是代表一辆汽车还是一辆摩托车。
在无监督学习的情况下,你不标记输入。无监督模型将输入聚类到基于相似特征/属性的聚类中。所以,在这种情况下,没有像“car”这样的标签。
监督学习基本上是一种技术,其中机器学习的训练数据已经被标记,假设是一个简单的偶数分类器,在训练过程中你已经对数据进行了分类。因此它使用“LABELLED”数据。
相反,无监督学习是一种机器自己标记数据的技术。或者你可以说这是机器从头开始自己学习的情况。
监督学习:你有标记的数据,必须从中学习。例如,房屋数据和价格,然后学会预测价格
无监督学习:你必须找到趋势,然后预测,没有预先给出的标签。 例句:班里有不同的人,然后又来了一个新同学,那么这个新同学属于哪个组呢?
监督式学习
在这种情况下,用于训练网络的每个输入模式都是 与输出模式相关联,它是目标或所需的 模式。在学习过程中假定有老师在场 过程,当对网络的计算结果进行比较时 输出和正确的预期输出,以确定误差。的 错误可以用来更改网络参数,从而导致 性能的提高。
无监督学习
在这种学习方法中,目标输出不会呈现给机器 网络。这就好像没有老师来呈现所渴望的 模式,因此,系统通过发现和学习自己 适应输入模式中的结构特征。
推荐文章
- model.eval()在pytorch中做什么?
- 为什么binary_crossentropy和categorical_crossentropy对同一个问题给出不同的性能?
- 一般来说,应该选择哪种机器学习分类器?
- 是否可以使用scikit-learn K-Means聚类来指定自己的距离函数?
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在Python中进行热编码?
- 如何将数据分成3组(训练、验证和测试)?
- 历史库存数据的来源
- 如何在PyTorch中初始化权重?
- 关于如何将数据集划分为训练集和验证集,是否存在经验法则?
- 在scikit-learn中保存分类器到磁盘
- 如何解释机器学习模型的损失和准确性
- 线性回归和逻辑回归的区别是什么?
- 监督学习和无监督学习的区别是什么?
- 如何在Python中实现Softmax函数