在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
当前回答
这个答案从一个激励性的例子开始,通过这个例子,得出一个单子的例子,并正式定义了“单子”。
考虑伪代码中的这三个函数:
f(<x, messages>) := <x, messages "called f. ">
g(<x, messages>) := <x, messages "called g. ">
wrap(x) := <x, "">
f采用<x,messages>形式的有序对,并返回一个有序对。它保持第一项不变,并在第二项后面附加“called f.”。与g相同。
您可以组合这些函数并获得原始值,以及显示函数调用顺序的字符串:
f(g(wrap(x)))
= f(g(<x, "">))
= f(<x, "called g. ">)
= <x, "called g. called f. ">
您不喜欢f和g负责将自己的日志消息附加到先前的日志信息。(为了论证起见,想象一下,f和g必须对这对中的第二项执行复杂的逻辑,而不是附加字符串。在两个或多个不同的函数中重复这种复杂的逻辑会很痛苦。)
您更喜欢编写更简单的函数:
f(x) := <x, "called f. ">
g(x) := <x, "called g. ">
wrap(x) := <x, "">
但看看当你编写它们时会发生什么:
f(g(wrap(x)))
= f(g(<x, "">))
= f(<<x, "">, "called g. ">)
= <<<x, "">, "called g. ">, "called f. ">
问题是,将一对传递到函数中并不能得到所需的结果。但如果你可以将一对输入到函数中呢:
feed(f, feed(g, wrap(x)))
= feed(f, feed(g, <x, "">))
= feed(f, <x, "called g. ">)
= <x, "called g. called f. ">
将feed(f,m)读为“feed m into f”。要将一对<x,messages>输入函数f,需要将x传递给f,从f中获取<y,messages〕,并返回<y,message message>。
feed(f, <x, messages>) := let <y, message> = f(x)
in <y, messages message>
请注意,当您对函数执行三项操作时会发生什么:
首先:如果包装一个值,然后将结果对送入函数:
feed(f, wrap(x))
= feed(f, <x, "">)
= let <y, message> = f(x)
in <y, "" message>
= let <y, message> = <x, "called f. ">
in <y, "" message>
= <x, "" "called f. ">
= <x, "called f. ">
= f(x)
这与将值传递给函数相同。
第二:如果你把一对放进包装里:
feed(wrap, <x, messages>)
= let <y, message> = wrap(x)
in <y, messages message>
= let <y, message> = <x, "">
in <y, messages message>
= <x, messages "">
= <x, messages>
这不会改变这对。
第三:如果定义了一个函数,该函数将x和g(x)输入f:
h(x) := feed(f, g(x))
并向其中输入一对:
feed(h, <x, messages>)
= let <y, message> = h(x)
in <y, messages message>
= let <y, message> = feed(f, g(x))
in <y, messages message>
= let <y, message> = feed(f, <x, "called g. ">)
in <y, messages message>
= let <y, message> = let <z, msg> = f(x)
in <z, "called g. " msg>
in <y, messages message>
= let <y, message> = let <z, msg> = <x, "called f. ">
in <z, "called g. " msg>
in <y, messages message>
= let <y, message> = <x, "called g. " "called f. ">
in <y, messages message>
= <x, messages "called g. " "called f. ">
= feed(f, <x, messages "called g. ">)
= feed(f, feed(g, <x, messages>))
这与将对输入g和将所得对输入f相同。
你有大部分的单子。现在您只需要了解程序中的数据类型。
<x,“称为f”>是什么类型的值?这取决于x是什么类型的值。如果x是t类型的,那么你的对就是“t和字符串对”类型的值了。称之为M型。
M是一个类型构造器:M本身并不表示一个类型,但一旦你用一个类型填空,M _就表示一个。M int是一对int和一个字符串。M字符串是一对字符串和一个字符串。等
恭喜你,你已经创建了monad!
形式上,你的monad是元组<M,feed,wrap>。
monad是一个元组<M,feed,wrap>,其中:
M是类型构造函数。feed接受一个(函数接受一个t并返回一个M u)和一个M t并返回M u。wrap接受一个v并返回一个M v。
t、 u和v是可以相同也可以不同的任意三种类型。单子满足您为特定单子证明的三个财产:
将包裹的t送入函数与将未包裹的t传入函数相同。形式上:饲料(f,包装(x))=f(x)将M t喂入包装物对M t没有任何影响。形式上:进给(包裹,m)=m将一个M t(称为M)输入一个函数将t传递到g从g得到一个M u(称为n)将n输入f与m进g从g得到n将n输入f形式上:饲料(h,m)=饲料(f,饲料(g,m)),其中h(x):=饲料(f,g(x))
通常,feed称为bind(在Haskell中为AKA>>=),wrap称为return。
其他回答
(另请参见“什么是monad?”中的答案)
蒙纳斯的一个很好的动机是西格菲(丹·皮波尼)的《你本可以发明蒙纳斯!(也许你已经有了)。还有很多其他monad教程,其中许多都试图使用各种类比以“简单的术语”来解释monad:这就是monad教程谬论;避开它们。
正如MacIver博士在《告诉我们为什么你的语言很糟糕》中所说:所以,我讨厌Haskell的事情:让我们从显而易见的开始。Monad教程。不,不是单子。特别是教程。他们没完没了,夸夸其谈,亲爱的上帝,他们太乏味了。此外,我从未见过任何令人信服的证据表明它们确实有帮助。阅读类定义,编写一些代码,忘掉这个可怕的名字。
你说你懂“也许莫纳德”吗?很好,你在路上了。只要开始使用其他monad,迟早你会了解monad的一般含义。
(如果你以数学为导向,你可能想忽略几十个教程,学习定义,或遵循类别理论的讲座:)定义的主要部分是Monad M包含一个“类型构造器”,为每个现有类型“T”定义一个新类型“M T”,以及在“常规”类型和“M”类型之间来回移动的一些方式。]
同样,令人惊讶的是,对monad最好的介绍之一实际上是介绍monad的早期学术论文之一,Philip Wadler的Monad for functional programming。它实际上有一些实用的、非平凡的激励性例子,与许多人工教程不同。
除了上面出色的答案之外,让我为您提供以下文章的链接(由Patrick Thomson撰写),该文章通过将概念与JavaScript库jQuery(及其使用“方法链接”来操作DOM的方式)相关联来解释monads:jQuery是Monad
jQuery文档本身并没有提到术语“monad”,而是谈到了可能更熟悉的“构建器模式”。这并不能改变一个事实,那就是你有一个合适的monad,也许你甚至没有意识到它。
公主对F#计算表达式的解释帮助了我,尽管我仍然不能说我真的理解了。
编辑:这个系列-用javascript解释monad-对我来说是一个“打破平衡”的系列。
http://blog.jcoglan.com/2011/03/05/translation-from-haskell-to-javascript-of-selected-portions-of-the-best-introduction-to-monads-ive-ever-read/http://blog.jcoglan.com/2011/03/06/monad-syntax-for-javascript/http://blog.jcoglan.com/2011/03/11/promises-are-the-monad-of-asynchronous-programming/
我认为理解单子是一件让你毛骨悚然的事。从这个意义上说,尽可能多地阅读“教程”是一个好主意,但通常奇怪的东西(不熟悉的语言或语法)会让你的大脑无法专注于基本内容。
有些事情我很难理解:
基于规则的解释对我来说从未奏效,因为大多数实际示例实际上需要的不仅仅是返回/绑定。此外,称之为规则也无济于事。这更像是“有些东西有共同点,我们把它们称为‘单子’,把共同点称为‘规则’”。Return(a->M<a>)和Bind(M<a>->(a->M<b>)->M<b>)很好,但我永远无法理解Bind如何从M<a>中提取a,以便将其传递给a->M<b>。我不认为我在任何地方读过(也许这对其他人来说都很明显),Return(M<a>->a)的反面必须存在于monad内部,它只是不需要暴露。
另一种尝试是解释monad,只使用Python列表和map函数。我完全接受这不是一个完整的解释,但我希望它能触及核心概念。
我从Monads上的funfunfunction视频和Learn You A Haskell章节“为了几个Monads更多”中得到了这一点的基础。我强烈推荐观看funfunfunction视频。
最简单的是,Monad是具有map和flatMap函数(在Haskell中绑定)的对象。有一些额外的必需财产,但这些是核心属性。
flatMap“展平”map的输出,对于列表,这只是连接列表的值,例如。
concat([[1], [4], [9]]) = [1, 4, 9]
因此,在Python中,我们基本上可以通过以下两个函数实现Monad:
def flatMap(func, lst):
return concat(map(func, lst))
def concat(lst):
return sum(lst, [])
func是任何接受值并返回列表的函数。
lambda x: [x*x]
解释
为了清楚起见,我通过一个简单的函数在Python中创建了concat函数,该函数将列表相加,即[]+[1]+[4]+[9]=[1,4,9](Haskell有一个原生的concat方法)。
我假设你知道地图功能是什么,例如:
>>> list(map(lambda x: [x*x], [1,2,3]))
[[1], [4], [9]]
展平是Monad的关键概念,对于每个作为Monad的对象,这种展平允许您获得Monad中包裹的值。
现在我们可以呼叫:
>>> flatMap(lambda x: [x*x], [1,2,3])
[1, 4, 9]
这个lambda取一个值x并将其放入一个列表中。monad适用于从值到monad类型的任何函数,所以在本例中是列表。
这是你的monad定义。
我认为为什么它们有用的问题已经在其他问题中得到了回答。
更多说明
其他不是列表的例子有JavaScript Promise,它有then方法,JavaScript Streams有flatMap方法。
因此Promise和Streams使用了一个稍微不同的函数,它将Stream或Promise展平,并从内部返回值。
Haskell列表monad具有以下定义:
instance Monad [] where
return x = [x]
xs >>= f = concat (map f xs)
fail _ = []
即有三个函数return(不要与大多数其他语言中的return混淆)、>>=(flatMap)和fail。
希望您能看到以下两者之间的相似之处:
xs >>= f = concat (map f xs)
and:
def flatMap(f, xs):
return concat(map(f, xs))
我对monads还是个新手,但我想我会分享一个我觉得读起来很好的链接(带图片!!):http://www.matusiak.eu/numerodix/blog/2012/3/11/monads-for-the-layman/(无隶属关系)
基本上,我从这篇文章中得到的温暖而模糊的概念是monad基本上是适配器,允许不同的函数以可组合的方式工作,即能够将多个函数串起来并混合和匹配它们,而不用担心不一致的返回类型等。因此,当我们尝试制作这些适配器时,BIND函数负责将苹果与苹果、橙子与橙子放在一起。LIFT功能负责使用“较低级别”的功能,并将其“升级”为与BIND功能一起使用并可组合。
我希望我做得对,更重要的是,希望这篇文章对单子有一个有效的观点。如果没有别的话,这篇文章有助于激发我学习更多关于单子叶植物的欲望。