想象两个正整数A和b,我想把这两个组合成一个整数C。

不可能有其他整数D和E组合成C。 所以把它们和加法运算符结合是不行的。例:30 + 10 = 40 = 40 + 0 = 39 + 1 连接也不管用。例如“31”+“2”= 312 =“3”+“12”

这种组合操作也应该是确定的(总是用相同的输入产生相同的结果),并且应该总是在整数的正侧或负侧产生一个整数。


当前回答

你正在寻找一个双射NxN - >n映射。这些是用于例如燕尾。请看这个PDF文件,它介绍了所谓的配对函数。维基百科介绍了一个特定的配对函数,即康托配对函数:

备注:三个

As others have made clear, if you plan to implement a pairing function, you may soon find you need arbitrarily large integers (bignums). If you don't want to make a distinction between the pairs (a, b) and (b, a), then sort a and b before applying the pairing function. Actually I lied. You are looking for a bijective ZxZ -> N mapping. Cantor's function only works on non-negative numbers. This is not a problem however, because it's easy to define a bijection f : Z -> N, like so: f(n) = n * 2 if n >= 0 f(n) = -n * 2 - 1 if n < 0

其他回答

假设我们有两个数字B和C,把它们编码成一个数字A

A = b + c * n

在哪里

B= a % n = B

C= a / n = C

如果A和B可以用2个字节表示,那么可以用4个字节组合它们。把A放在最有效的一半,B放在最不有效的一半。

在C语言中,这给出了(假设sizeof(short)=2和sizeof(int)=4):

unsigned int combine(unsigned short A, unsigned short B)
{
    return ((unsigned)A<<16) | (unsigned)B;
}

unsigned short getA(unsigned int C)
{
    return C>>16;
}

unsigned short getB(unsigned int C)
{
    return C & 0xFFFF;    // or  return (unsigned short)C;
}

使输入unsigned short或uint16_t确保他们在你|或+他们一起之前零扩展。否则- B会将上面的位设置为全1或,或者如果你添加,则从上半部分减去1。

强制转换(unsigned)A可以避免将窄类型默认提升为带符号int后左移的带符号溢出UB。对于更广泛的类型,也必须避免转移出位你保持,如((uint64_t)A << 32 | B,因为默认提升停止在int。

(unsigned)B强制转换是不必要的;重要的是它一开始是无符号空头B。左边的|是无符号的意味着它也将转换为无符号的。

你可以将它用于有符号类型,至少是getA和getB,你可以从combine返回有符号int,但是输入需要0 -extend,所以在C中你需要它们在扩大之前是无符号的short。比如((unsigned)(unsigned空头)A << 16) | (unsigned空头)B

你可能想要使用uint16_t和uint32_t,来定义类型宽度,以匹配你正在使用的移位计数。

构造一个映射并不难:

   1  2  3  4  5  use this mapping if (a,b) != (b,a)
1  0  1  3  6 10
2  2  4  7 11 16
3  5  8 12 17 23
4  9 13 18 24 31
5 14 19 25 32 40

   1  2  3  4  5 use this mapping if (a,b) == (b,a) (mirror)
1  0  1  2  4  6
2  1  3  5  7 10
3  2  5  8 11 14
4  4  8 11 15 19
5  6 10 14 19 24


    0  1 -1  2 -2 use this if you need negative/positive
 0  0  1  2  4  6
 1  1  3  5  7 10
-1  2  5  8 11 14
 2  4  8 11 15 19
-2  6 10 14 19 24

求任意a b的值有点难。

给定正整数A和B,设D = A的位数,E= B的位数 结果可以是D, 0, E, 0, a和B的串联。

示例:A = 300, B = 12。D = 3, E=2 result = 302030012。 这利用了一个事实,即唯一以0开头的数字是0,

优点:易于编码,易于解码,人类可读,有效数字可以先比较,潜在的比较无需计算,简单的错误检查。

缺点:结果的大小是个问题。不过没关系,我们为什么要在电脑里存储无界整数呢。

对于作为参数的正整数和参数顺序无关的情况:

下面是一个无序配对函数: < x, y > = x * y + trunc ((x - y | | - 1) ^ 2 / 4) = < y、x > 对于x≠y,这里有一个唯一的无序配对函数: <x, y> = if x < y: X * (y - 1) + trunc((y - X - 2)²/ 4) 如果x > y: (x - 1) * y + trunc((x - y - 2)^2 / 4) = <y, x>