想象两个正整数A和b,我想把这两个组合成一个整数C。

不可能有其他整数D和E组合成C。 所以把它们和加法运算符结合是不行的。例:30 + 10 = 40 = 40 + 0 = 39 + 1 连接也不管用。例如“31”+“2”= 312 =“3”+“12”

这种组合操作也应该是确定的(总是用相同的输入产生相同的结果),并且应该总是在整数的正侧或负侧产生一个整数。


当前回答

再简单一点:给定两个数字,A和B让str为串联:'A' + ';' + 'B'。然后让输出为hash(str)。我知道这不是一个数学答案,但一个简单的python(有一个内置的哈希函数)脚本应该做这项工作。

其他回答

构造一个映射并不难:

   1  2  3  4  5  use this mapping if (a,b) != (b,a)
1  0  1  3  6 10
2  2  4  7 11 16
3  5  8 12 17 23
4  9 13 18 24 31
5 14 19 25 32 40

   1  2  3  4  5 use this mapping if (a,b) == (b,a) (mirror)
1  0  1  2  4  6
2  1  3  5  7 10
3  2  5  8 11 14
4  4  8 11 15 19
5  6 10 14 19 24


    0  1 -1  2 -2 use this if you need negative/positive
 0  0  1  2  4  6
 1  1  3  5  7 10
-1  2  5  8 11 14
 2  4  8 11 15 19
-2  6 10 14 19 24

求任意a b的值有点难。

我们可以在O(1)空间和O(N)时间内将两个数字编码为1。 假设您希望将0-9范围内的数字编码为1,例如。5和6。怎么做呢?简单,

  5*10 + 6 = 56. 
   
    5 can be obtained by doing 56/10 
    6 can be obtained by doing 56%10.

即使是两位数的整数,比如56和45,56*100 + 45 = 5645。我们同样可以通过执行5645/100和5645%100来获得单个数字

但对于一个大小为n的数组,例如。A ={4,0,2,1,3},假设我们想对3和4进行编码,那么:

 3 * 5 + 4 = 19               OR         3 + 5 * 4 = 23
 3 :- 19 / 5 = 3                         3 :- 23 % 5 = 3
 4 :- 19 % 5 = 4                         4 :- 23 / 5 = 4

通过推广,我们得到

    x * n + y     OR       x + n * y

但我们还需要注意改变的值;所以结果是

    (x%n)*n + y  OR x + n*(y%n)

你可以通过除法和对结果取余来得到每个数字。

尽管Stephan202的答案是唯一真正通用的答案,但对于有限范围内的整数,您可以做得更好。例如,如果你的范围是0..1万,那么你可以这样做:

#define RANGE_MIN 0
#define RANGE_MAX 10000

unsigned int merge(unsigned int x, unsigned int y)
{
    return (x * (RANGE_MAX - RANGE_MIN + 1)) + y;
}

void split(unsigned int v, unsigned int &x, unsigned int &y)
{
    x = RANGE_MIN + (v / (RANGE_MAX - RANGE_MIN + 1));
    y = RANGE_MIN + (v % (RANGE_MAX - RANGE_MIN + 1));
}

结果可以适用于单个整数,其范围可达整数类型基数的平方根。这种打包方法比Stephan202更通用的方法效率稍高。它的解码也简单得多;对于初学者来说,不需要平方根:)

给定正整数A和B,设D = A的位数,E= B的位数 结果可以是D, 0, E, 0, a和B的串联。

示例:A = 300, B = 12。D = 3, E=2 result = 302030012。 这利用了一个事实,即唯一以0开头的数字是0,

优点:易于编码,易于解码,人类可读,有效数字可以先比较,潜在的比较无需计算,简单的错误检查。

缺点:结果的大小是个问题。不过没关系,我们为什么要在电脑里存储无界整数呢。

假设我们有两个数字B和C,把它们编码成一个数字A

A = b + c * n

在哪里

B= a % n = B

C= a / n = C