最近有很多关于卡桑德拉的话题。
Twitter, Digg, Facebook等都在使用它。
什么时候有意义:
使用卡桑德拉, 不用卡桑德拉,还有 使用RDMS而不是Cassandra。
最近有很多关于卡桑德拉的话题。
Twitter, Digg, Facebook等都在使用它。
什么时候有意义:
使用卡桑德拉, 不用卡桑德拉,还有 使用RDMS而不是Cassandra。
当前回答
Apache cassandra是一个分布式数据库,用于跨许多商用服务器管理大量结构化数据,同时提供高可用性服务,没有单点故障。
该架构完全基于上限定理,即可用性和分区容忍,有趣的是最终一致。
不要使用它,如果你不存储数据卷的机架集群, 如果您不存储时间序列数据,请不要使用, 不要使用如果你不分区你的服务器, 如果你要求强烈的一致性,请不要使用。
其他回答
Apache cassandra是一个分布式数据库,用于跨许多商用服务器管理大量结构化数据,同时提供高可用性服务,没有单点故障。
该架构完全基于上限定理,即可用性和分区容忍,有趣的是最终一致。
不要使用它,如果你不存储数据卷的机架集群, 如果您不存储时间序列数据,请不要使用, 不要使用如果你不分区你的服务器, 如果你要求强烈的一致性,请不要使用。
除了这里的其他答案之外,沉重的单个查询与无数的轻查询负载是另一个需要考虑的问题。在nosql风格的DB中自动优化单个查询本身就比较困难。我使用过MongoDB,在尝试计算复杂查询时遇到了性能问题。我没有使用Cassandra,但我预计它会有同样的问题。
另一方面,如果您的负载预期是许多小型查询的负载,并且您希望能够轻松地向外扩展,那么您可以利用大多数NoSql数据库提供的最终一致性。注意,最终一致性实际上不是非关系数据模型的特性,但是在基于nosql的系统中实现和设置一致性要容易得多。
For a single, very heavy query, any modern RDBMS engine can do a decent job parallelizing parts of the query and take advantage of as much CPU and memory you throw at it (on a single machine). NoSql databases don't have enough information about the structure of the data to be able to make assumptions that will allow truly intelligent parallelization of a big query. They do allow you to easily scale out more servers (or cores) but once the query hits a complexity level you are basically forced to split it apart manually to parts that the NoSql engine knows how to deal with intelligently.
根据我使用MongoDB的经验,由于查询的复杂性,MongoDB最终无法对其进行优化,也无法在多个数据上运行部分查询。Mongo可以并行多个查询,但不太擅长优化单个查询。
Cassandra是一个特定问题的答案:当您有太多数据,以至于无法在一台服务器上存储时,您该怎么办?如何将所有数据存储在多个服务器上,同时不破坏银行账户,不让开发人员抓狂?Facebook每天都会收到4tb的压缩数据。这个数字很可能在一年内增长两倍以上。
如果您没有这么多数据,或者您有数百万美元来支付企业Oracle/DB2集群安装费用,以及安装和维护它所需的专家,那么您可以使用SQL数据库。
然而,Facebook不再使用cassandra,现在几乎只使用MySQL,在应用程序堆栈中移动分区,以获得更快的性能和更好的控制。
在评估分布式数据系统时,您必须考虑CAP定理——您可以选择以下两个:一致性、可用性和分区容差。
Cassandra是一个可用的、支持最终一致性的分区容忍系统。要了解更多信息,请参阅我写的这篇博客文章:NoSQL系统的可视化指南。
Mongodb有非常强大的聚合函数和一个富有表现力的聚合框架。它具有许多开发人员习惯于从关系数据库世界中使用的特性。例如,它的文档数据/存储结构允许比Cassandra更复杂的数据模型。
当然,所有这些都是有代价的。因此,当您选择数据库(NoSQL、NewSQL或RDBMS)时,请考虑您要解决的问题和可伸缩性需求。没有一个数据库可以完成所有的工作。