我想将JSON数据转换为Python对象。
我从Facebook API收到JSON数据对象,我想将其存储在数据库中。
我的当前视图在Django (Python)(请求。POST包含JSON):
response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()
这很好,但是如何处理复杂的JSON数据对象呢?
如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?
这里给出的答案没有返回正确的对象类型,因此我在下面创建了这些方法。如果你试图向给定JSON中不存在的类中添加更多字段,它们也会失败:
def dict_to_class(class_name: Any, dictionary: dict) -> Any:
instance = class_name()
for key in dictionary.keys():
setattr(instance, key, dictionary[key])
return instance
def json_to_class(class_name: Any, json_string: str) -> Any:
dict_object = json.loads(json_string)
return dict_to_class(class_name, dict_object)
查看JSON模块文档中的专门化JSON对象解码一节。您可以使用它将JSON对象解码为特定的Python类型。
这里有一个例子:
class User(object):
def __init__(self, name, username):
self.name = name
self.username = username
import json
def object_decoder(obj):
if '__type__' in obj and obj['__type__'] == 'User':
return User(obj['name'], obj['username'])
return obj
json.loads('{"__type__": "User", "name": "John Smith", "username": "jsmith"}',
object_hook=object_decoder)
print type(User) # -> <type 'type'>
更新
如果你想通过json模块访问字典中的数据,可以这样做:
user = json.loads('{"__type__": "User", "name": "John Smith", "username": "jsmith"}')
print user['name']
print user['username']
就像一本普通的字典。
这不是一个很难的事情,我看到上面的答案,他们中的大多数在“列表”中有一个性能问题
这段代码比上面的代码快得多
import json
class jsonify:
def __init__(self, data):
self.jsonify = data
def __getattr__(self, attr):
value = self.jsonify.get(attr)
if isinstance(value, (list, dict)):
return jsonify(value)
return value
def __getitem__(self, index):
value = self.jsonify[index]
if isinstance(value, (list, dict)):
return jsonify(value)
return value
def __setitem__(self, index, value):
self.jsonify[index] = value
def __delattr__(self, index):
self.jsonify.pop(index)
def __delitem__(self, index):
self.jsonify.pop(index)
def __repr__(self):
return json.dumps(self.jsonify, indent=2, default=lambda x: str(x))
exmaple
response = jsonify(
{
'test': {
'test1': [{'ok': 1}]
}
}
)
response.test -> jsonify({'test1': [{'ok': 1}]})
response.test.test1 -> jsonify([{'ok': 1}])
response.test.test1[0] -> jsonify({'ok': 1})
response.test.test1[0].ok -> int(1)
使用python 3.7,我发现下面的代码非常简单有效。在本例中,将JSON从文件加载到字典中:
class Characteristic:
def __init__(self, characteristicName, characteristicUUID):
self.characteristicName = characteristicName
self.characteristicUUID = characteristicUUID
class Service:
def __init__(self, serviceName, serviceUUID, characteristics):
self.serviceName = serviceName
self.serviceUUID = serviceUUID
self.characteristics = characteristics
class Definitions:
def __init__(self, services):
self.services = []
for service in services:
self.services.append(Service(**service))
def main():
parser = argparse.ArgumentParser(
prog="BLEStructureGenerator",
description="Taking in a JSON input file which lists all of the services, "
"characteristics and encoded properties. The encoding takes in "
"another optional template services and/or characteristics "
"file where the JSON file contents are applied to the templates.",
epilog="Copyright Brown & Watson International"
)
parser.add_argument('definitionfile',
type=argparse.FileType('r', encoding='UTF-8'),
help="JSON file which contains the list of characteristics and "
"services in the required format")
parser.add_argument('-s', '--services',
type=argparse.FileType('r', encoding='UTF-8'),
help="Services template file to be used for each service in the "
"JSON file list")
parser.add_argument('-c', '--characteristics',
type=argparse.FileType('r', encoding='UTF-8'),
help="Characteristics template file to be used for each service in the "
"JSON file list")
args = parser.parse_args()
definition_dict = json.load(args.definitionfile)
definitions = Definitions(**definition_dict)
这不是代码高尔夫,但这里是我使用类型的最短技巧。SimpleNamespace作为JSON对象的容器。
与namedtuple解决方案相比,它是:
可能更快/更小,因为它没有为每个对象创建一个类
更短的
没有重命名选项,对于不是有效标识符的键可能有相同的限制(在幕后使用setattr)
例子:
from __future__ import print_function
import json
try:
from types import SimpleNamespace as Namespace
except ImportError:
# Python 2.x fallback
from argparse import Namespace
data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'
x = json.loads(data, object_hook=lambda d: Namespace(**d))
print (x.name, x.hometown.name, x.hometown.id)
Dacite也可能是您的解决方案,它支持以下功能:
嵌套结构
(基本)类型检查
可选字段(即typing.Optional)
工会
向前引用
集合
自定义类型钩子
https://pypi.org/project/dacite/
from dataclasses import dataclass
from dacite import from_dict
@dataclass
class User:
name: str
age: int
is_active: bool
data = {
'name': 'John',
'age': 30,
'is_active': True,
}
user = from_dict(data_class=User, data=data)
assert user == User(name='John', age=30, is_active=True)