我想将JSON数据转换为Python对象。

我从Facebook API收到JSON数据对象,我想将其存储在数据库中。

我的当前视图在Django (Python)(请求。POST包含JSON):

response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()

这很好,但是如何处理复杂的JSON数据对象呢? 如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?


当前回答

我正在寻找一个与recordclass一起工作的解决方案。RecordClass,支持嵌套对象,可用于json序列化和json反序列化。

扩展DS的答案,扩展BeneStr的解决方案,我想出了以下似乎有效的方法:

代码:

import json
import recordclass

class NestedRec(recordclass.RecordClass):
    a : int = 0
    b : int = 0

class ExampleRec(recordclass.RecordClass):
    x : int       = None
    y : int       = None
    nested : NestedRec = NestedRec()

class JsonSerializer:
    @staticmethod
    def dumps(obj, ensure_ascii=True, indent=None, sort_keys=False):
        return json.dumps(obj, default=JsonSerializer.__obj_to_dict, ensure_ascii=ensure_ascii, indent=indent, sort_keys=sort_keys)

    @staticmethod
    def loads(s, klass):
        return JsonSerializer.__dict_to_obj(klass, json.loads(s))

    @staticmethod
    def __obj_to_dict(obj):
        if hasattr(obj, "_asdict"):
            return obj._asdict()
        else:
            return json.JSONEncoder().default(obj)

    @staticmethod
    def __dict_to_obj(klass, s_dict):
        kwargs = {
            key : JsonSerializer.__dict_to_obj(cls, s_dict[key]) if hasattr(cls,'_asdict') else s_dict[key] \
                for key,cls in klass.__annotations__.items() \
                    if s_dict is not None and key in s_dict
        }
        return klass(**kwargs)

用法:

example_0 = ExampleRec(x = 10, y = 20, nested = NestedRec( a = 30, b = 40 ) )

#Serialize to JSON

json_str = JsonSerializer.dumps(example_0)
print(json_str)
#{
#  "x": 10,
#  "y": 20,
#  "nested": {
#    "a": 30,
#    "b": 40
#  }
#}

# Deserialize from JSON
example_1 = JsonSerializer.loads(json_str, ExampleRec)
example_1.x += 1
example_1.y += 1
example_1.nested.a += 1
example_1.nested.b += 1

json_str = JsonSerializer.dumps(example_1)
print(json_str)
#{
#  "x": 11,
#  "y": 21,
#  "nested": {
#    "a": 31,
#    "b": 41
#  }
#}

其他回答

这不是一个很难的事情,我看到上面的答案,他们中的大多数在“列表”中有一个性能问题

这段代码比上面的代码快得多

import json 

class jsonify:
    def __init__(self, data):
        self.jsonify = data

    def __getattr__(self, attr):
        value = self.jsonify.get(attr)
        if isinstance(value, (list, dict)):
            return jsonify(value)
        return value

    def __getitem__(self, index):
        value = self.jsonify[index]
        if isinstance(value, (list, dict)):
            return jsonify(value)
        return value

    def __setitem__(self, index, value):
        self.jsonify[index] = value

    def __delattr__(self, index):
        self.jsonify.pop(index)

    def __delitem__(self, index):
        self.jsonify.pop(index)

    def __repr__(self):
        return json.dumps(self.jsonify, indent=2, default=lambda x: str(x))

exmaple

response = jsonify(
    {
        'test': {
            'test1': [{'ok': 1}]
        }
    }
)
response.test -> jsonify({'test1': [{'ok': 1}]})
response.test.test1 -> jsonify([{'ok': 1}])
response.test.test1[0] -> jsonify({'ok': 1})
response.test.test1[0].ok -> int(1)

已经有多种可行的答案,但有一些由个人制作的小型库可以满足大多数用户的需求。

json2object就是一个例子。给定一个已定义的类,它将json数据反序列化到您的自定义模型,包括自定义属性和子对象。

它的使用非常简单。一个来自图书馆wiki的例子:

从json2object导入jsontoobject作为Jo 类学生: def __init__(自我): 自我。firstName =无 自我。lastName = None 自我。courses =[课程(")] 类课程: 定义__init__(self, name): Self.name = name 数据= " '{ “firstName”:“詹姆斯”, “姓”:“债券”, “课程”:[{ “名称”:“战斗”}, { “名称”:“射击”} ] } “‘ model = Student() Result = jo.deserialize(数据,模型) print (result.courses [0] . name)

如果你使用的是Python 3.6或更新版本,你可以看看squema——一个用于静态类型数据结构的轻量级模块。它使您的代码易于阅读,同时提供简单的数据验证,转换和序列化,而无需额外的工作。你可以把它看作是命名元组和数据类的一种更复杂、更有见解的选择。下面是你如何使用它:

from uuid import UUID
from squema import Squema


class FbApiUser(Squema):
    id: UUID
    age: int
    name: str

    def save(self):
        pass


user = FbApiUser(**json.loads(response))
user.save()

Dacite也可能是您的解决方案,它支持以下功能:

嵌套结构 (基本)类型检查 可选字段(即typing.Optional) 工会 向前引用 集合 自定义类型钩子

https://pypi.org/project/dacite/

from dataclasses import dataclass
from dacite import from_dict


@dataclass
class User:
    name: str
    age: int
    is_active: bool


data = {
    'name': 'John',
    'age': 30,
    'is_active': True,
}

user = from_dict(data_class=User, data=data)

assert user == User(name='John', age=30, is_active=True)

如果你正在寻找将JSON或任何复杂字典的类型安全反序列化到python类中,我强烈推荐python 3.7+的pydantic。它不仅有一个简洁的API(不需要编写“helper”样板),可以与Python数据类集成,而且具有复杂和嵌套数据结构的静态和运行时类型验证。

使用示例:

from pydantic import BaseModel
from datetime import datetime

class Item(BaseModel):
    field1: str | int           # union
    field2: int | None = None   # optional
    field3: str = 'default'     # default values

class User(BaseModel):
    name: str | None = None
    username: str
    created: datetime           # default type converters
    items: list[Item] = []      # nested complex types

data = {
    'name': 'Jane Doe',
    'username': 'user1',
    'created': '2020-12-31T23:59:00+10:00',
    'items': [
        {'field1': 1, 'field2': 2},
        {'field1': 'b'},
        {'field1': 'c', 'field3': 'override'}
    ]
}

user: User = User(**data)

要了解更多细节和特性,请查看文档中的pydantic的rational部分。