以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
当前回答
我会建议使用发电机与产量声明和产量从。
from collections.abc import Iterable
def flatten(items, ignore_types=(bytes, str)):
"""
Flatten all of the nested lists to the one. Ignoring flatting of iterable types str and bytes by default.
"""
for x in items:
if isinstance(x, Iterable) and not isinstance(x, ignore_types):
yield from flatten(x)
else:
yield x
values = [7, [4, 3, 5, [7, 3], (3, 4), ('A', {'B', 'C'})]]
for v in flatten(values):
print(v)
其他回答
考虑安装 more_itertools 包。
> pip install more_itertools
它配备了一个应用程序为平板(来源,从 itertools 食谱):
import more_itertools
lst = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(more_itertools.flatten(lst))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
注意:正如文件中提到的那样,平板需要列表。 查看下面的平板更多不规则输入。
至于版本 2.4,您可以用更多_itertools.collapse (来源,由abarnet 贡献) 插入更复杂、更精致的 iterables。
lst = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(more_itertools.collapse(lst))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
lst = [[1, 2, 3], [[4, 5, 6]], [[[7]]], 8, 9] # complex nesting
list(more_itertools.collapse(lst))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
如果我想添加一些东西到以前的答案,这里是我的重复滑板功能,可以滑板不只是滑板列表,但也任何提供的容器或一般任何物品,可以扔出物品。
def flatten(iterable):
# These types won't considered a sequence or generally a container
exclude = str, bytes
for i in iterable:
try:
if isinstance(i, exclude):
raise TypeError
iter(i)
except TypeError:
yield i
else:
yield from flatten(i)
这样,你可以排除你不想要的类型,如 str 或其他。
想法是,如果一个对象可以通过 iter(),它已经准备好产生物品,所以 iterable 甚至可以作为一个对象具有发明器表达式。
有人可以争论:为什么你写了这么一般的,当OP没有要求它?OK,你是对的,我只是觉得这可能帮助某人(就像它为我做的那样)。
测试案例:
lst1 = [1, {3}, (1, 6), [[3, 8]], [[[5]]], 9, ((((2,),),),)]
lst2 = ['3', B'A', [[[(i ** 2 for i in range(3))]]], range(3)]
print(list(flatten(lst1)))
print(list(flatten(lst2)))
出口:
[1, 3, 1, 6, 3, 8, 5, 9, 2]
['3', b'A', 0, 1, 4, 0, 1, 2]
我用 perfplot 测试了大多数建议的解决方案(我的宠物项目,基本上是时间周围的插槽),并发现
import functools
import operator
functools.reduce(operator.iconcat, a, [])
要成为最快的解决方案,无论是许多小列表还是很少的长列表都被混合(operator.iadd 同样快)。
更简单、更可接受的选择是
out = []
for sublist in a:
out.extend(sublist)
如果字体列表的数量很大,这表现得比上面的建议略糟糕。
此分類上一篇
此分類上一篇
重复字符的代码:
import functools
import itertools
import operator
import numpy as np
import perfplot
def forfor(a):
return [item for sublist in a for item in sublist]
def sum_brackets(a):
return sum(a, [])
def functools_reduce(a):
return functools.reduce(operator.concat, a)
def functools_reduce_iconcat(a):
return functools.reduce(operator.iconcat, a, [])
def itertools_chain(a):
return list(itertools.chain.from_iterable(a))
def numpy_flat(a):
return list(np.array(a).flat)
def numpy_concatenate(a):
return list(np.concatenate(a))
def extend(a):
out = []
for sublist in a:
out.extend(sublist)
return out
b = perfplot.bench(
setup=lambda n: [list(range(10))] * n,
# setup=lambda n: [list(range(n))] * 10,
kernels=[
forfor,
sum_brackets,
functools_reduce,
functools_reduce_iconcat,
itertools_chain,
numpy_flat,
numpy_concatenate,
extend,
],
n_range=[2 ** k for k in range(16)],
xlabel="num lists (of length 10)",
# xlabel="len lists (10 lists total)"
)
b.save("out.png")
b.show()
你的功能不起作用的原因是因为延伸延伸一个序列在现场,并且不会返回它。
reduce(lambda x,y: x.extend(y) or x, l)
注意:扩展比 + 列表更有效。
要插入深厚的数据结构,请使用 iteration_utilities.deepflatten1:
>>> from iteration_utilities import deepflatten
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> list(deepflatten(l, depth=1))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> l = [[1, 2, 3], [4, [5, 6]], 7, [8, 9]]
>>> list(deepflatten(l))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
这是一个发电机,所以你需要将结果投到列表中,或者明确地对其进行调解。
要单一的平面,如果每一个项目本身是不可分割的,你也可以使用 iteration_utilities.flatten 它本身只是一个薄的旋转器周围 itertools.chain.from_iterable:
>>> from iteration_utilities import flatten
>>> l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
>>> list(flatten(l))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
只需添加一些时间表(基于Nico Schlömer的答案,其中不包含此答案中的功能):
此分類上一篇
结果表明,如果 iterable 只包含几个内部 iterables 那么 总数将是最快的,但是,对于长期 iterables 只有 itertools.chain.from_iterable, iteration_utilities.deepflatten 或 nested 理解具有合理的性能, itertools.chain.from_iterable 是最快的(如 Nico Schlömer 已经注意到)。
from itertools import chain
from functools import reduce
from collections import Iterable # or from collections.abc import Iterable
import operator
from iteration_utilities import deepflatten
def nested_list_comprehension(lsts):
return [item for sublist in lsts for item in sublist]
def itertools_chain_from_iterable(lsts):
return list(chain.from_iterable(lsts))
def pythons_sum(lsts):
return sum(lsts, [])
def reduce_add(lsts):
return reduce(lambda x, y: x + y, lsts)
def pylangs_flatten(lsts):
return list(flatten(lsts))
def flatten(items):
"""Yield items from any nested iterable; see REF."""
for x in items:
if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
yield from flatten(x)
else:
yield x
def reduce_concat(lsts):
return reduce(operator.concat, lsts)
def iteration_utilities_deepflatten(lsts):
return list(deepflatten(lsts, depth=1))
from simple_benchmark import benchmark
b = benchmark(
[nested_list_comprehension, itertools_chain_from_iterable, pythons_sum, reduce_add,
pylangs_flatten, reduce_concat, iteration_utilities_deepflatten],
arguments={2**i: [[0]*5]*(2**i) for i in range(1, 13)},
argument_name='number of inner lists'
)
b.plot()
1 Disclaimer:我是该图书馆的作者