我想找出我的数据的每一列中NaN的数量。
当前回答
假设您希望获得一个名为reviews的数据框架中称为price的列(系列)中缺失值(NaN)的数量
#import the dataframe
import pandas as pd
reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0)
用n_missing_prices作为变量来获取缺失的值,简单地做
n_missing_prices = sum(reviews.price.isnull())
print(n_missing_prices)
Sum是这里的关键方法,在我意识到Sum是在这种情况下使用的正确方法之前,我试图使用count
其他回答
df.isnull().sum()
//type: <class 'pandas.core.series.Series'>
or
df.column_name.isnull().sum()
//type: <type 'numpy.int64'>
自从pandas 0.14.1以来,我的建议在value_counts方法中有一个关键字参数已经实现:
import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
for col in df:
print df[col].value_counts(dropna=False)
2 1
1 1
NaN 1
dtype: int64
NaN 2
1 1
dtype: int64
我使用这个循环来计算每一列的缺失值:
# check missing values
import numpy as np, pandas as pd
for col in df:
print(col +': '+ np.str(df[col].isna().sum()))
根据投票最多的答案,我们可以很容易地定义一个函数,给我们一个数据框架来预览每一列中缺失的值和缺失值的百分比:
def missing_values_table(df):
mis_val = df.isnull().sum()
mis_val_percent = 100 * df.isnull().sum() / len(df)
mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1)
mis_val_table_ren_columns = mis_val_table.rename(
columns = {0 : 'Missing Values', 1 : '% of Total Values'})
mis_val_table_ren_columns = mis_val_table_ren_columns[
mis_val_table_ren_columns.iloc[:,1] != 0].sort_values(
'% of Total Values', ascending=False).round(1)
print ("Your selected dataframe has " + str(df.shape[1]) + " columns.\n"
"There are " + str(mis_val_table_ren_columns.shape[0]) +
" columns that have missing values.")
return mis_val_table_ren_columns
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.count.html#pandas.Series.count
pandas.Series.count
Series.count(level=None)[source]
返回系列中非na /null观测值的个数
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 确定每列中NA值的个数
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 如何结合多个条件子集数据帧使用“或”?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式