我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
我的方法是通用的,您可以通过逗号分隔分隔符=variable来添加额外的分隔符,并对其进行未来验证。
工作代码:
import pandas as pd
import re
df = pd.DataFrame({'$a':[1,2], '$b': [3,4],'$c':[5,6], '$d': [7,8], '$e': [9,10]})
delimiters = '$'
matchPattern = '|'.join(map(re.escape, delimiters))
df.columns = [re.split(matchPattern, i)[1] for i in df.columns ]
输出:
>>> df
$a $b $c $d $e
0 1 3 5 7 9
1 2 4 6 8 10
>>> df
a b c d e
0 1 3 5 7 9
1 2 4 6 8 10
其他回答
df.columns = ['a', 'b', 'c', 'd', 'e']
它将按照您提供的顺序用您提供的名称替换现有名称。
如“使用文本数据:
df.columns = df.columns.str.replace('$', '')
df.rename(index=str, columns={'A':'a', 'B':'b'})
pandas.DataFrame.rename
这里有一个我喜欢用来减少打字的漂亮小函数:
def rename(data, oldnames, newname):
if type(oldnames) == str: # Input can be a string or list of strings
oldnames = [oldnames] # When renaming multiple columns
newname = [newname] # Make sure you pass the corresponding list of new names
i = 0
for name in oldnames:
oldvar = [c for c in data.columns if name in c]
if len(oldvar) == 0:
raise ValueError("Sorry, couldn't find that column in the dataset")
if len(oldvar) > 1: # Doesn't have to be an exact match
print("Found multiple columns that matched " + str(name) + ": ")
for c in oldvar:
print(str(oldvar.index(c)) + ": " + str(c))
ind = input('Please enter the index of the column you would like to rename: ')
oldvar = oldvar[int(ind)]
if len(oldvar) == 1:
oldvar = oldvar[0]
data = data.rename(columns = {oldvar : newname[i]})
i += 1
return data
下面是一个如何工作的示例:
In [2]: df = pd.DataFrame(np.random.randint(0, 10, size=(10, 4)), columns = ['col1', 'col2', 'omg', 'idk'])
# First list = existing variables
# Second list = new names for those variables
In [3]: df = rename(df, ['col', 'omg'],['first', 'ohmy'])
Found multiple columns that matched col:
0: col1
1: col2
Please enter the index of the column you would like to rename: 0
In [4]: df.columns
Out[5]: Index(['first', 'col2', 'ohmy', 'idk'], dtype='object')
如果已经有新列名的列表,可以尝试以下操作:
new_cols = ['a', 'b', 'c', 'd', 'e']
new_names_map = {df.columns[i]:new_cols[i] for i in range(len(new_cols))}
df.rename(new_names_map, axis=1, inplace=True)