虽然我从来都不需要这样做,但我突然意识到用Python创建一个不可变对象可能有点棘手。你不能只是覆盖__setattr__,因为这样你甚至不能在__init__中设置属性。子类化一个元组是一个有效的技巧:

class Immutable(tuple):
    
    def __new__(cls, a, b):
        return tuple.__new__(cls, (a, b))

    @property
    def a(self):
        return self[0]
        
    @property
    def b(self):
        return self[1]

    def __str__(self):
        return "<Immutable {0}, {1}>".format(self.a, self.b)
    
    def __setattr__(self, *ignored):
        raise NotImplementedError

    def __delattr__(self, *ignored):
        raise NotImplementedError

但是你可以通过self[0]和self[1]访问a和b变量,这很烦人。

这在Pure Python中可行吗?如果不是,我该如何用C扩展来做呢?

(只能在python3中工作的答案是可以接受的)。

更新:

从Python 3.7开始,要使用的方法是使用@dataclass装饰器,参见最新接受的答案。


当前回答

第三方attr模块提供了此功能。

编辑:python 3.7已经通过@dataclass在stdlib中采用了这个想法。

$ pip install attrs
$ python
>>> @attr.s(frozen=True)
... class C(object):
...     x = attr.ib()
>>> i = C(1)
>>> i.x = 2
Traceback (most recent call last):
   ...
attr.exceptions.FrozenInstanceError: can't set attribute

Attr通过覆盖__setattr__来实现冻结类,根据文档,Attr在每次实例化时都有轻微的性能影响。

如果您习惯使用类作为数据类型,attr可能特别有用,因为它为您处理样板文件(但没有任何魔力)。特别地,它为你编写了9个dunder (__X__)方法(除非你关闭其中任何一个),包括repr, init, hash和所有比较函数。

Attr还为__slots__提供了一个帮助器。

其他回答

使用冻结的数据类

对于Python 3.7+,你可以使用带frozen=True选项的数据类,这是一种非常Python化和可维护的方式来做你想做的事情。

它看起来是这样的:

from dataclasses import dataclass

@dataclass(frozen=True)
class Immutable:
    a: Any
    b: Any

由于数据类的字段需要类型提示,所以我使用了typing模块中的Any。

不使用命名元组的原因

在Python 3.7之前,经常可以看到命名元组被用作不可变对象。它在很多方面都很棘手,其中之一是命名元组之间的__eq__方法不考虑对象的类。例如:

from collections import namedtuple

ImmutableTuple = namedtuple("ImmutableTuple", ["a", "b"])
ImmutableTuple2 = namedtuple("ImmutableTuple2", ["a", "c"])

obj1 = ImmutableTuple(a=1, b=2)
obj2 = ImmutableTuple2(a=1, c=2)

obj1 == obj2  # will be True

如你所见,即使obj1和obj2的类型不同,即使它们的字段名称不同,obj1 == obj2仍然给出True。这是因为使用的__eq__方法是元组的方法,它只比较给定位置的字段的值。这可能是一个巨大的错误来源,特别是如果您是子类化这些类。

这种方式不停止对象。__setattr__从工作,但我仍然发现它有用:

class A(object):

    def __new__(cls, children, *args, **kwargs):
        self = super(A, cls).__new__(cls)
        self._frozen = False  # allow mutation from here to end of  __init__
        # other stuff you need to do in __new__ goes here
        return self

    def __init__(self, *args, **kwargs):
        super(A, self).__init__()
        self._frozen = True  # prevent future mutation

    def __setattr__(self, name, value):
        # need to special case setting _frozen.
        if name != '_frozen' and self._frozen:
            raise TypeError('Instances are immutable.')
        else:
            super(A, self).__setattr__(name, value)

    def __delattr__(self, name):
        if self._frozen:
            raise TypeError('Instances are immutable.')
        else:
            super(A, self).__delattr__(name)

你可能需要根据用例重写更多的东西(比如__setitem__)。

第三方attr模块提供了此功能。

编辑:python 3.7已经通过@dataclass在stdlib中采用了这个想法。

$ pip install attrs
$ python
>>> @attr.s(frozen=True)
... class C(object):
...     x = attr.ib()
>>> i = C(1)
>>> i.x = 2
Traceback (most recent call last):
   ...
attr.exceptions.FrozenInstanceError: can't set attribute

Attr通过覆盖__setattr__来实现冻结类,根据文档,Attr在每次实例化时都有轻微的性能影响。

如果您习惯使用类作为数据类型,attr可能特别有用,因为它为您处理样板文件(但没有任何魔力)。特别地,它为你编写了9个dunder (__X__)方法(除非你关闭其中任何一个),包括repr, init, hash和所有比较函数。

Attr还为__slots__提供了一个帮助器。

如果您对具有行为的对象感兴趣,那么namedtuple几乎是您的解决方案。

正如namedtuple文档底部所描述的,您可以从namedtuple派生自己的类;然后,你可以添加你想要的行为。

例如(代码直接取自文档):

class Point(namedtuple('Point', 'x y')):
    __slots__ = ()
    @property
    def hypot(self):
        return (self.x ** 2 + self.y ** 2) ** 0.5
    def __str__(self):
        return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

for p in Point(3, 4), Point(14, 5/7):
    print(p)

这将导致:

Point: x= 3.000  y= 4.000  hypot= 5.000
Point: x=14.000  y= 0.714  hypot=14.018

这种方法适用于Python 3和Python 2.7(在IronPython上也进行了测试)。 唯一的缺点是继承树有点奇怪;但这不是你经常玩的东西。

我已经创建了一个小型类装饰器decorator,以使类不可变(除了在__init__内部)。作为https://github.com/google/etils的一部分。

from etils import epy


@epy.frozen
class A:

  def __init__(self):
    self.x = 123  # Inside `__init__`, attribute can be assigned

a = A()
a.x = 456  # AttributeError

这也支持继承。

实现:

_Cls = TypeVar('_Cls')


def frozen(cls: _Cls) -> _Cls:
  """Class decorator which prevent mutating attributes after `__init__`."""
  if not isinstance(cls, type):
    raise TypeError(f'{cls.__name__} is not a class.')

  cls.__init__ = _wrap_init(cls.__init__)
  cls.__setattr__ = _wrap_setattr(cls.__setattr__)
  return cls


def _wrap_init(init_fn):
  """`__init__` wrapper."""

  @functools.wraps(init_fn)
  def new_init(self, *args, **kwargs):
    if hasattr(self, '_epy_is_init_done'):
      # `_epy_is_init_done` already created, so it means we're
      # a `super().__init__` call.
      return init_fn(self, *args, **kwargs)
    object.__setattr__(self, '_epy_is_init_done', False)
    init_fn(self, *args, **kwargs)
    object.__setattr__(self, '_epy_is_init_done', True)

  return new_init

def _wrap_setattr(setattr_fn):
  """`__setattr__` wrapper."""

  @functools.wraps(setattr_fn)
  def new_setattr(self, name, value):
    if not hasattr(self, '_epy_is_init_done'):
      raise ValueError(
          'Child of `@epy.frozen` class should be `@epy.frozen` too. (Error'
          f' raised by {type(self)})'
      )
    if not self._epy_is_init_done:  # pylint: disable=protected-access
      return setattr_fn(self, name, value)
    else:
      raise AttributeError(
          f'Cannot assign {name!r} in `@epy.frozen` class {type(self)}'
      )

  return new_setattr