我想使用.replace函数替换多个字符串。
我目前有
string.replace("condition1", "")
但想要一些像
string.replace("condition1", "").replace("condition2", "text")
尽管这样的语法感觉不太好
正确的做法是什么?有点像在grep/regex中,你可以用\1和\2来替换某些搜索字符串的字段
我想使用.replace函数替换多个字符串。
我目前有
string.replace("condition1", "")
但想要一些像
string.replace("condition1", "").replace("condition2", "text")
尽管这样的语法感觉不太好
正确的做法是什么?有点像在grep/regex中,你可以用\1和\2来替换某些搜索字符串的字段
当前回答
这里有一个使用reduce的第一个解决方案的变体,如果你喜欢功能性的。:)
repls = {'hello' : 'goodbye', 'world' : 'earth'}
s = 'hello, world'
reduce(lambda a, kv: a.replace(*kv), repls.iteritems(), s)
马蒂诺的版本更好:
repls = ('hello', 'goodbye'), ('world', 'earth')
s = 'hello, world'
reduce(lambda a, kv: a.replace(*kv), repls, s)
其他回答
你真的不应该这样做,但我觉得这太酷了:
>>> replacements = {'cond1':'text1', 'cond2':'text2'}
>>> cmd = 'answer = s'
>>> for k,v in replacements.iteritems():
>>> cmd += ".replace(%s, %s)" %(k,v)
>>> exec(cmd)
现在,答案是所有替换的结果
再说一次,这是非常俗气的,不是你应该经常使用的东西。但我很高兴知道如果你需要的话,你可以这样做。
我需要一个解决方案,其中字符串可以被替换为正则表达式, 例如,通过将多个空格字符替换为一个空格字符来帮助规范化长文本。根据其他人(包括MiniQuark和mmj)的一系列答案,我得出了以下结论:
def multiple_replace(string, reps, re_flags = 0):
""" Transforms string, replacing keys from re_str_dict with values.
reps: dictionary, or list of key-value pairs (to enforce ordering;
earlier items have higher priority).
Keys are used as regular expressions.
re_flags: interpretation of regular expressions, such as re.DOTALL
"""
if isinstance(reps, dict):
reps = reps.items()
pattern = re.compile("|".join("(?P<_%d>%s)" % (i, re_str[0])
for i, re_str in enumerate(reps)),
re_flags)
return pattern.sub(lambda x: reps[int(x.lastgroup[1:])][1], string)
它适用于其他答案中给出的例子,例如:
>>> multiple_replace("(condition1) and --condition2--",
... {"condition1": "", "condition2": "text"})
'() and --text--'
>>> multiple_replace('hello, world', {'hello' : 'goodbye', 'world' : 'earth'})
'goodbye, earth'
>>> multiple_replace("Do you like cafe? No, I prefer tea.",
... {'cafe': 'tea', 'tea': 'cafe', 'like': 'prefer'})
'Do you prefer tea? No, I prefer cafe.'
对我来说,最重要的是你也可以使用正则表达式,例如只替换整个单词,或规范化空白:
>>> s = "I don't want to change this name:\n Philip II of Spain"
>>> re_str_dict = {r'\bI\b': 'You', r'[\n\t ]+': ' '}
>>> multiple_replace(s, re_str_dict)
"You don't want to change this name: Philip II of Spain"
如果你想使用字典键作为普通字符串, 你可以在调用multiple_replace之前转义这些,例如使用下面的函数:
def escape_keys(d):
""" transform dictionary d by applying re.escape to the keys """
return dict((re.escape(k), v) for k, v in d.items())
>>> multiple_replace(s, escape_keys(re_str_dict))
"I don't want to change this name:\n Philip II of Spain"
下面的函数可以帮助在你的字典键中找到错误的正则表达式(因为来自multiple_replace的错误消息不是很明显):
def check_re_list(re_list):
""" Checks if each regular expression in list is well-formed. """
for i, e in enumerate(re_list):
try:
re.compile(e)
except (TypeError, re.error):
print("Invalid regular expression string "
"at position {}: '{}'".format(i, e))
>>> check_re_list(re_str_dict.keys())
请注意,它没有链接替换,而是同时执行它们。这使得它更有效率,而不会限制它能做什么。为了模仿链接的效果,你可能只需要添加更多的字符串替换对,并确保这些对的预期顺序:
>>> multiple_replace("button", {"but": "mut", "mutton": "lamb"})
'mutton'
>>> multiple_replace("button", [("button", "lamb"),
... ("but", "mut"), ("mutton", "lamb")])
'lamb'
我的方法是首先将字符串标记化,然后决定每个标记是否包含它。
潜在地,如果我们可以假设一个hashmap/set的O(1)查找,可能会更好:
remove_words = {"we", "this"}
target_sent = "we should modify this string"
target_sent_words = target_sent.split()
filtered_sent = " ".join(list(filter(lambda word: word not in remove_words, target_sent_words)))
Filtered_sent现在是'应该修改字符串'
对于只替换一个字符,使用翻译和str.maketrans是我最喜欢的方法。
Tl;dr > result_string = your_string.translate(str.maketrans(dict_mapping))
demo
my_string = 'This is a test string.'
dict_mapping = {'i': 's', 's': 'S'}
result_good = my_string.translate(str.maketrans(dict_mapping))
result_bad = my_string
for x, y in dict_mapping.items():
result_bad = result_bad.replace(x, y)
print(result_good) # ThsS sS a teSt Strsng.
print(result_bad) # ThSS SS a teSt StrSng.
我在学校作业中也做过类似的练习。这就是我的解
dictionary = {1: ['hate', 'love'],
2: ['salad', 'burger'],
3: ['vegetables', 'pizza']}
def normalize(text):
for i in dictionary:
text = text.replace(dictionary[i][0], dictionary[i][1])
return text
自己查看测试字符串上的结果
string_to_change = 'I hate salad and vegetables'
print(normalize(string_to_change))