有了一个点列表,我如何确定它们是否是顺时针顺序的?
例如:
point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)
会说它是逆时针的(对某些人来说是逆时针的)
有了一个点列表,我如何确定它们是否是顺时针顺序的?
例如:
point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)
会说它是逆时针的(对某些人来说是逆时针的)
当前回答
求出这些点的质心。
假设有直线从这个点到你们的点。
求line0 line1的两条直线夹角
而不是直线1和直线2
...
...
如果这个角是单调递增的,而不是逆时针递增的,
如果是单调递减,则是顺时针递减
Else(它不是单调的)
你不能决定,所以这是不明智的
其他回答
虽然这些答案是正确的,但它们在数学上的强度比必要的要大。假设地图坐标,其中最北的点是地图上的最高点。找到最北的点,如果两个点相等,它是最北的,然后是最东的(这是lhf在他的答案中使用的点)。在你的观点中,
点[0]= (5,0)
点[1]= (6,4)
点[2]= (4,5)
点[3]= (1,5)
点[4]= (1,0)
If we assume that P2 is the most north then east point either the previous or next point determine clockwise, CW, or CCW. Since the most north point is on the north face, if the P1 (previous) to P2 moves east the direction is CW. In this case, it moves west, so the direction is CCW as the accepted answer says. If the previous point has no horizontal movement, then the same system applies to the next point, P3. If P3 is west of P2, it is, then the movement is CCW. If the P2 to P3 movement is east, it's west in this case, the movement is CW. Assume that nte, P2 in your data, is the most north then east point and the prv is the previous point, P1 in your data, and nxt is the next point, P3 in your data, and [0] is horizontal or east/west where west is less than east, and [1] is vertical.
if (nte[0] >= prv[0] && nxt[0] >= nte[0]) return(CW);
if (nte[0] <= prv[0] && nxt[0] <= nte[0]) return(CCW);
// Okay, it's not easy-peasy, so now, do the math
if (nte[0] * nxt[1] - nte[1] * nxt[0] - prv[0] * (nxt[1] - crt[1]) + prv[1] * (nxt[0] - nte[0]) >= 0) return(CCW); // For quadrant 3 return(CW)
return(CW) // For quadrant 3 return (CCW)
找出y最小的顶点(如果有平手,则x最大)。假设顶点是A,列表中的前一个顶点是B,列表中的下一个顶点是c。现在计算AB和AC的叉乘的符号。
引用:
如何确定一个简单多边形的方向?在 常见问题:计算机。图形。算法。 维基百科的曲线定位。
我的c# / LINQ解决方案是基于下面@charlesbretana的交叉积建议的。你可以为线圈指定一个参考法线。只要曲线大部分在向上向量所定义的平面内,它就可以工作。
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
namespace SolidworksAddinFramework.Geometry
{
public static class PlanePolygon
{
/// <summary>
/// Assumes that polygon is closed, ie first and last points are the same
/// </summary>
public static bool Orientation
(this IEnumerable<Vector3> polygon, Vector3 up)
{
var sum = polygon
.Buffer(2, 1) // from Interactive Extensions Nuget Pkg
.Where(b => b.Count == 2)
.Aggregate
( Vector3.Zero
, (p, b) => p + Vector3.Cross(b[0], b[1])
/b[0].Length()/b[1].Length());
return Vector3.Dot(up, sum) > 0;
}
}
}
使用单元测试
namespace SolidworksAddinFramework.Spec.Geometry
{
public class PlanePolygonSpec
{
[Fact]
public void OrientationShouldWork()
{
var points = Sequences.LinSpace(0, Math.PI*2, 100)
.Select(t => new Vector3((float) Math.Cos(t), (float) Math.Sin(t), 0))
.ToList();
points.Orientation(Vector3.UnitZ).Should().BeTrue();
points.Reverse();
points.Orientation(Vector3.UnitZ).Should().BeFalse();
}
}
}
一些建议的方法在非凸多边形(如新月形)的情况下会失败。这里有一个简单的方法,它可以用于非凸多边形(它甚至可以用于自相交的多边形,如数字8,告诉你它是否主要是顺时针)。
对边求和,(x2−x1)(y2 + y1)如果结果是正的,曲线是顺时针的,如果结果是负的,曲线是逆时针的。(结果是封闭面积的两倍,采用+/-惯例。)
point[0] = (5,0) edge[0]: (6-5)(4+0) = 4
point[1] = (6,4) edge[1]: (4-6)(5+4) = -18
point[2] = (4,5) edge[2]: (1-4)(5+5) = -30
point[3] = (1,5) edge[3]: (1-1)(0+5) = 0
point[4] = (1,0) edge[4]: (5-1)(0+0) = 0
---
-44 counter-clockwise
以下是基于上述答案的swift 3.0解决方案:
for (i, point) in allPoints.enumerated() {
let nextPoint = i == allPoints.count - 1 ? allPoints[0] : allPoints[i+1]
signedArea += (point.x * nextPoint.y - nextPoint.x * point.y)
}
let clockwise = signedArea < 0