有了一个点列表,我如何确定它们是否是顺时针顺序的?
例如:
point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)
会说它是逆时针的(对某些人来说是逆时针的)
有了一个点列表,我如何确定它们是否是顺时针顺序的?
例如:
point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)
会说它是逆时针的(对某些人来说是逆时针的)
当前回答
在测试了几个不可靠的实现之后,在CW/CCW方向方面提供令人满意结果的算法是由OP在这个线程(shoelace_formula_3)中发布的算法。
与往常一样,正数表示CW方向,而负数表示CCW方向。
其他回答
从其中一个顶点开始,计算每条边对应的角度。
第一个和最后一个将是零(所以跳过它们);对于其余部分,角度的正弦值将由归一化与(点[n]-点[0])和(点[n-1]-点[0])的单位长度的叉乘给出。
如果这些值的和是正的,那么你的多边形是逆时针方向绘制的。
求出这些点的质心。
假设有直线从这个点到你们的点。
求line0 line1的两条直线夹角
而不是直线1和直线2
...
...
如果这个角是单调递增的,而不是逆时针递增的,
如果是单调递减,则是顺时针递减
Else(它不是单调的)
你不能决定,所以这是不明智的
c#代码实现lhf的答案:
// https://en.wikipedia.org/wiki/Curve_orientation#Orientation_of_a_simple_polygon
public static WindingOrder DetermineWindingOrder(IList<Vector2> vertices)
{
int nVerts = vertices.Count;
// If vertices duplicates first as last to represent closed polygon,
// skip last.
Vector2 lastV = vertices[nVerts - 1];
if (lastV.Equals(vertices[0]))
nVerts -= 1;
int iMinVertex = FindCornerVertex(vertices);
// Orientation matrix:
// [ 1 xa ya ]
// O = | 1 xb yb |
// [ 1 xc yc ]
Vector2 a = vertices[WrapAt(iMinVertex - 1, nVerts)];
Vector2 b = vertices[iMinVertex];
Vector2 c = vertices[WrapAt(iMinVertex + 1, nVerts)];
// determinant(O) = (xb*yc + xa*yb + ya*xc) - (ya*xb + yb*xc + xa*yc)
double detOrient = (b.X * c.Y + a.X * b.Y + a.Y * c.X) - (a.Y * b.X + b.Y * c.X + a.X * c.Y);
// TBD: check for "==0", in which case is not defined?
// Can that happen? Do we need to check other vertices / eliminate duplicate vertices?
WindingOrder result = detOrient > 0
? WindingOrder.Clockwise
: WindingOrder.CounterClockwise;
return result;
}
public enum WindingOrder
{
Clockwise,
CounterClockwise
}
// Find vertex along one edge of bounding box.
// In this case, we find smallest y; in case of tie also smallest x.
private static int FindCornerVertex(IList<Vector2> vertices)
{
int iMinVertex = -1;
float minY = float.MaxValue;
float minXAtMinY = float.MaxValue;
for (int i = 0; i < vertices.Count; i++)
{
Vector2 vert = vertices[i];
float y = vert.Y;
if (y > minY)
continue;
if (y == minY)
if (vert.X >= minXAtMinY)
continue;
// Minimum so far.
iMinVertex = i;
minY = y;
minXAtMinY = vert.X;
}
return iMinVertex;
}
// Return value in (0..n-1).
// Works for i in (-n..+infinity).
// If need to allow more negative values, need more complex formula.
private static int WrapAt(int i, int n)
{
// "+n": Moves (-n..) up to (0..).
return (i + n) % n;
}
Sean的答案的JavaScript实现:
function calcArea(poly) { if(!poly || poly.length < 3) return null; let end = poly.length - 1; let sum = poly[end][0]*poly[0][1] - poly[0][0]*poly[end][1]; for(let i=0; i<end; ++i) { const n=i+1; sum += poly[i][0]*poly[n][1] - poly[n][0]*poly[i][1]; } return sum; } function isClockwise(poly) { return calcArea(poly) > 0; } let poly = [[352,168],[305,208],[312,256],[366,287],[434,248],[416,186]]; console.log(isClockwise(poly)); let poly2 = [[618,186],[650,170],[701,179],[716,207],[708,247],[666,259],[637,246],[615,219]]; console.log(isClockwise(poly2));
我很确定这是对的。这似乎是有效的:-)
这些多边形看起来是这样的,如果你想知道的话:
正如这篇维基百科文章中所解释的曲线方向,给定平面上的3个点p, q和r(即x和y坐标),您可以计算以下行列式的符号
如果行列式为负(即定向(p, q, r) < 0),则多边形是顺时针方向(CW)。如果行列式为正(即定向(p, q, r) > 0),则多边形是逆时针方向(CCW)。如果点p, q和r共线,行列式为零(即定向(p, q, r) == 0)。
在上面的公式中,由于我们使用的是齐次坐标,我们将1放在p, q和r的坐标前面。