有了一个点列表,我如何确定它们是否是顺时针顺序的?

例如:

point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)

会说它是逆时针的(对某些人来说是逆时针的)


当前回答

在测试了几个不可靠的实现之后,在CW/CCW方向方面提供令人满意结果的算法是由OP在这个线程(shoelace_formula_3)中发布的算法。

与往常一样,正数表示CW方向,而负数表示CCW方向。

其他回答

从其中一个顶点开始,计算每条边对应的角度。

第一个和最后一个将是零(所以跳过它们);对于其余部分,角度的正弦值将由归一化与(点[n]-点[0])和(点[n-1]-点[0])的单位长度的叉乘给出。

如果这些值的和是正的,那么你的多边形是逆时针方向绘制的。

对于那些不想“重新发明轮子”的人,我认为值得一提的是,这个检查是在一个名为Shapely (github)的漂亮的Python包中实现的(它基于GEOS C/ c++库):

Shapely is a BSD-licensed Python package for manipulation and analysis of planar geometric objects. It is using the widely deployed open-source geometry library GEOS (the engine of PostGIS, and a port of JTS). Shapely wraps GEOS geometries and operations to provide both a feature rich Geometry interface for singular (scalar) geometries and higher-performance NumPy ufuncs for operations using arrays of geometries. Shapely is not primarily focused on data serialization formats or coordinate systems, but can be readily integrated with packages that are.

来源:https://shapely.readthedocs.io/en/stable/

一个给出OP坐标的小例子:

import numpy as np
from shapely.geometry import Polygon

points = np.array([
    (5,0),
    (6,4),
    (4,5),
    (1,5),
    (1,0)
])

P = Polygon(points)

这是新构造的多边形:

import matplotlib.pyplot as plt

x,y = P.exterior.coords.xy
plt.plot(x,y)
plt.axis('equal')
plt.grid()
plt.show()

你可以直接使用LinearRing的is_ccw属性来检查多边形是CW还是CCW:

type(P.exterior)
>: shapely.geometry.polygon.LinearRing

P.exterior.is_ccw
>: True

如果颠倒:

points = np.flipud(points)
points
>: 
array([[1, 0],
       [1, 5],
       [4, 5],
       [6, 4],
       [5, 0]])


P1 = Polygon(points)

P1.exterior.is_ccw
>: True

进一步阅读的文档和参考资料:

shaely is_ccw (github): https://github.com/shapely/shapely/blob/eba985c6e0170ecdd90c83592fd0afa7ae793cb8/shapely/predicates.py#L72-L108 Libgeos (github): https://github.com/libgeos/geos GEOS API参考:https://libgeos.org/doxygen/classgeos_1_1algorithm_1_1Orientation.html#a5af93795969b80f97d7997195974d7c8 GEOS实现(github): https://github.com/libgeos/geos/blob/ab0ce6dafdf7f75ec6d234b6c65bb209037dda17/src/algorithm/Orientation.cpp#L43-L133

The cross product measures the degree of perpendicular-ness of two vectors. Imagine that each edge of your polygon is a vector in the x-y plane of a three-dimensional (3-D) xyz space. Then the cross product of two successive edges is a vector in the z-direction, (positive z-direction if the second segment is clockwise, minus z-direction if it's counter-clockwise). The magnitude of this vector is proportional to the sine of the angle between the two original edges, so it reaches a maximum when they are perpendicular, and tapers off to disappear when the edges are collinear (parallel).

因此,对于多边形的每个顶点(点),计算两条相邻边的叉乘大小:

Using your data:
point[0] = (5, 0)
point[1] = (6, 4)
point[2] = (4, 5)
point[3] = (1, 5)
point[4] = (1, 0)

把边连续地标为 edgeA是从point0到point1的段 点1到点2之间的edgeB ... edgeE在point4和point0之间。

那么顶点A (point0)在两者之间 edgeE[从点4到点0] 从point0到' point1'

这两条边本身就是向量,它们的x坐标和y坐标可以通过减去它们的起点和终点的坐标来确定:

edgeE = point0 - point4 = (1,0) - (5,0) = (- 4,0) and edgeA = point1 - point0 = (6,4) - (1,0) = (5,4) and

这两个相邻边的外积是用下面矩阵的行列式来计算的,这个矩阵是通过将两个向量的坐标放在表示三个坐标轴的符号(i, j, & k)下面来构造的。第三个(零)值坐标在那里,因为外积概念是一个三维结构,所以我们将这些2-D向量扩展到3-D,以便应用外积:

 i    j    k 
-4    0    0
 1    4    0    

假设所有的叉乘都产生一个垂直于两个向量相乘平面的向量,上面矩阵的行列式只有一个k(或z轴)分量。 计算k轴或z轴分量大小的公式为 A1 *b2 - a2*b1 = -4* 4 - 0* 1 = -16

这个值的大小(-16)是两个原始向量夹角的正弦值,乘以两个向量大小的乘积。 实际上,它值的另一个公式是 A X B(叉乘)= |A| * |B| * sin(AB)。

为了得到角度的大小你需要用这个值(-16)除以两个向量大小的乘积。

|A| * |B| = 4 *根号(17)= 16.4924…

所以sin(AB) = -16 / 16.4924 = -.97014…

这是一个度量顶点后的下一段是否向左或向右弯曲,以及弯曲的程度。不需要取arcsin函数。我们只关心它的大小,当然还有它的符号(正的还是负的)!

对闭合路径周围的其他4个点都这样做,并将每个顶点的计算值相加。

如果最终的和是正的,就顺时针,负的,逆时针。

正如这篇维基百科文章中所解释的曲线方向,给定平面上的3个点p, q和r(即x和y坐标),您可以计算以下行列式的符号

如果行列式为负(即定向(p, q, r) < 0),则多边形是顺时针方向(CW)。如果行列式为正(即定向(p, q, r) > 0),则多边形是逆时针方向(CCW)。如果点p, q和r共线,行列式为零(即定向(p, q, r) == 0)。

在上面的公式中,由于我们使用的是齐次坐标,我们将1放在p, q和r的坐标前面。

解决方案R确定方向和反向如果顺时针(发现这是必要的owin对象):

coords <- cbind(x = c(5,6,4,1,1),y = c(0,4,5,5,0))
a <- numeric()
for (i in 1:dim(coords)[1]){
  #print(i)
  q <- i + 1
  if (i == (dim(coords)[1])) q <- 1
  out <- ((coords[q,1]) - (coords[i,1])) * ((coords[q,2]) + (coords[i,2]))
  a[q] <- out
  rm(q,out)
} #end i loop

rm(i)

a <- sum(a) #-ve is anti-clockwise

b <- cbind(x = rev(coords[,1]), y = rev(coords[,2]))

if (a>0) coords <- b #reverses coords if polygon not traced in anti-clockwise direction