df是一个pandas数据框架。 我想找到所有数字类型的列。 喜欢的东西:

isNumeric = is_numeric(df)

当前回答

虽然这是一个古老的话题,

但我认为下面的公式比其他的都简单

df [df.describe () .columns]

由于函数describe()仅适用于数值列,因此输出的列将仅为数值列。

其他回答

调整这个答案,你可以做到

df.ix[:,df.applymap(np.isreal).all(axis=0)]

在这里,np.applymap(np.isreal)显示数据帧中的每个单元格是否都是数值,而.axis(all=0)检查列中的所有值是否都为True,并返回一系列可用于索引所需列的布尔值。

请参阅以下代码:

if(dataset.select_dtypes(include=[np.number]).shape[1] > 0):
display(dataset.select_dtypes(include=[np.number]).describe())
if(dataset.select_dtypes(include=[np.object]).shape[1] > 0):
display(dataset.select_dtypes(include=[np.object]).describe())

通过这种方式,您可以检查值是数值,如float和int还是srting值。第二个if语句用于检查对象引用的字符串值。

这是另一个简单的代码,用于在pandas数据帧中查找数字列,

numeric_clmns = df.dtypes[df.dtypes != "object"].index 
df.select_dtypes(exclude = ['object'])

更新:

df.select_dtypes(include= np.number)

或者是熊猫的新版本

 df.select_dtypes('number')

很多贴出来的答案都是低效的。这些答案要么返回/选择原始数据帧的子集(不必要的副本),要么在describe()的情况下执行不必要的计算统计。

要获得数字列名,可以使用pd.api.types的条件列表推导式。is_numeric_dtype功能:

numeric_cols = [col for col in df if pd.api.types.is_numeric_dtype(df[col])]

我不确定这个函数是什么时候引入的。