df是一个pandas数据框架。 我想找到所有数字类型的列。 喜欢的东西:

isNumeric = is_numeric(df)

当前回答

简单的一行程序:

df.select_dtypes('number').columns

其他回答

简单的一行程序:

df.select_dtypes('number').columns
def is_type(df, baseType):
    import numpy as np
    import pandas as pd
    test = [issubclass(np.dtype(d).type, baseType) for d in df.dtypes]
    return pd.DataFrame(data = test, index = df.columns, columns = ["test"])
def is_float(df):
    import numpy as np
    return is_type(df, np.float)
def is_number(df):
    import numpy as np
    return is_type(df, np.number)
def is_integer(df):
    import numpy as np
    return is_type(df, np.integer)

你可以使用DataFrame的select_dtypes方法。它包括include和exclude两个参数。所以isNumeric看起来是这样的:

numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']

newdf = df.select_dtypes(include=numerics)

调整这个答案,你可以做到

df.ix[:,df.applymap(np.isreal).all(axis=0)]

在这里,np.applymap(np.isreal)显示数据帧中的每个单元格是否都是数值,而.axis(all=0)检查列中的所有值是否都为True,并返回一系列可用于索引所需列的布尔值。

下面的代码将返回数据集的数字列的名称列表。

cnames=list(marketing_train.select_dtypes(exclude=['object']).columns)

这里marketing_train是我的数据集,select_dtypes()是使用exclude和include参数选择数据类型的函数,columns用于获取数据集的列名 以上代码的输出如下:

['custAge',
     'campaign',
     'pdays',
     'previous',
     'emp.var.rate',
     'cons.price.idx',
     'cons.conf.idx',
     'euribor3m',
     'nr.employed',
     'pmonths',
     'pastEmail']