这将在GUI中显示图形:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [1, 4, 9])
plt.show()

但我如何将图形保存到文件(例如foo.png)中?


当前回答

刚刚在MatPlotLib文档中找到了解决此问题的链接:http://matplotlib.org/faq/howto_faq.html#generate-图像-无窗口外观

他们说,防止弹出图形的最简单方法是通过matplotib.use(<backend>)使用非交互式后端(例如Agg),例如:

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.savefig('myfig')

我个人还是更喜欢使用plt.close(图),因为这样你就可以选择隐藏某些数字(在循环期间),但仍然可以显示循环后数据处理的数字。它可能比选择非交互式后端要慢——如果有人测试了它,那会很有趣。

UPDATE:对于Spyder,通常不能以这种方式设置后端(因为Spyder通常会提前加载matplotlib,从而阻止您使用matplotlib.use())。

相反,请使用plt.switch_backend('Agg'),或在Spyder prefs中关闭“enable support”,然后自己运行matplotlib.use('Agg')命令。

从这两个提示中:一、二

其他回答

你可以这样做:

def plotAFig():
  plt.figure()
  plt.plot(x,y,'b-')
  plt.savefig("figurename.png")
  plt.close()

我使用了以下方法:

import matplotlib.pyplot as plt

p1 = plt.plot(dates, temp, 'r-', label="Temperature (celsius)")  
p2 = plt.plot(dates, psal, 'b-', label="Salinity (psu)")  
plt.legend(loc='upper center', numpoints=1, bbox_to_anchor=(0.5, -0.05),        ncol=2, fancybox=True, shadow=True)

plt.savefig('data.png')  
plt.show() 
plt.close()

我发现保存图片后使用plt.show非常重要,否则它将无法工作。图片以png格式导出

嗯,我确实建议使用包装器来渲染或控制绘图。示例可以是mpltex(https://github.com/liuyxpp/mpltex)或prettyplotlib(https://github.com/olgabot/prettyplotlib).

import mpltex

@mpltex.acs_decorator
def myplot():
  plt.figure()
  plt.plot(x,y,'b-',lable='xxx')
  plt.tight_layout(pad=0.5)
  plt.savefig('xxxx')  # the figure format was controlled by the decorator, it can be either eps, or pdf or png....
  plt.close()

我基本上经常使用这个装饰器在美国化学学会、美国物理学会、美国光学学会、Elsivier等各种期刊上发表学术论文。

示例如下图所示(https://github.com/MarkMa1990/gradientDescent):

如果像我一样使用Spyder IDE,则必须禁用交互模式:

plt.ioff()

(此命令在科学启动时自动启动)

如果要再次启用,请使用:

plt.ion()

根据问题Matplotlib(pyplot)savefig输出空白图像。

有一点需要注意:如果您使用plt.show,并且它应该在plt.savefig之后,否则您将给出一个空白图像。

详细示例:

import numpy as np
import matplotlib.pyplot as plt


def draw_result(lst_iter, lst_loss, lst_acc, title):
    plt.plot(lst_iter, lst_loss, '-b', label='loss')
    plt.plot(lst_iter, lst_acc, '-r', label='accuracy')

    plt.xlabel("n iteration")
    plt.legend(loc='upper left')
    plt.title(title)
    plt.savefig(title+".png")  # should before plt.show method

    plt.show()


def test_draw():
    lst_iter = range(100)
    lst_loss = [0.01 * i + 0.01 * i ** 2 for i in xrange(100)]
    # lst_loss = np.random.randn(1, 100).reshape((100, ))
    lst_acc = [0.01 * i - 0.01 * i ** 2 for i in xrange(100)]
    # lst_acc = np.random.randn(1, 100).reshape((100, ))
    draw_result(lst_iter, lst_loss, lst_acc, "sgd_method")


if __name__ == '__main__':
    test_draw()