我无法理解这个,哪个更随机?

rand()

OR:

rand() * rand()

我发现这是一个真正的脑筋急转弯,你能帮我吗?


编辑:

直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。


当前回答

我们可以通过使用Kolmogorov复杂性如果数字序列不能被压缩,那么它是我们在这个长度上可以达到的最随机的。。。我知道这种测量更多的是理论上的选择。。。

其他回答

当你对随机数的组合会发生什么感到怀疑时,你可以利用你在统计理论中学到的经验。

在OP的情况下,他想知道X*X=X^2的结果是什么,其中X是沿统一[0,1]分布的随机变量。我们将使用CDF技术,因为它只是一对一映射。

由于X~Uniform[0,1],其cdf为:fX(X)=1我们需要转换Y<-X^2,因此Y=X^2求逆x(y):sqrt(y)=x,这给出了x作为y的函数。接下来,求导数dx/dy:d/dy(sqrt(y))=1/(2sqrt(y)

Y的分布如下:fY(Y)=fX(x(Y))|dx/dy |=1/(2 sqrt(Y)

我们还没有完成,我们必须得到Y的域,因为0<=x<1,0<=x^2<1因此Y在范围[0,1)内。如果你想检查Y的pdf是否真的是pdf,请在域中集成它:从0到1集成1/(2 sqrt(Y)),实际上,它会弹出为1。此外,请注意所述函数的形状看起来像belisarious发布的内容。

至于X1+X2+…+Xn,(其中Xi ~一致[0,1]),我们可以求助于中心极限定理,它适用于存在矩的任何分布。这就是Z检验存在的原因。

用于确定生成的pdf的其他技术包括雅可比变换(这是cdf技术的广义版本)和MGF技术。

编辑:作为澄清,请注意,我所说的是结果转换的分布,而不是其随机性。这实际上是一个单独的讨论。我实际上得到的是(rand())^2。对于rand()*rand((),它要复杂得多,无论如何,这不会导致任何类型的均匀分布。

浮动随机数通常基于一种算法,该算法产生一个介于零和一定范围之间的整数。因此,通过使用rand()*rand((),您实际上是在说int_rand()*int_rand()/rand_max ^2-这意味着您排除了任何素数/rand_max^2。

这显著改变了随机分布。

rand()在大多数系统中都是均匀分布的,如果正确播种,很难预测。除非你有特殊的理由对其进行数学运算(例如,将分布成形为所需的曲线),否则使用该方法。

强制性的xkcd。。。

好的,所以我会尝试添加一些值来补充其他答案,说你正在创建和使用一个随机数生成器。

随机数发生器是一种具有多种特性的设备(从非常普遍的意义上讲),可以根据需要进行修改。其中一些(来自我)是:

熵:如香农熵分布:统计分布(泊松、正态等)类型:数字的来源(算法、自然事件、组合等)和应用的算法。效率:执行的速度或复杂性。模式:周期、顺序、运行等。也许还有更多。。。

在这里的大多数答案中,分布是主要的关注点,但通过混合和匹配函数和参数,您可以创建生成随机数的新方法,这些随机数将具有不同的特征,其中一些特征乍一看可能不明显。

用更离散的数字来考虑可能会有所帮助。考虑一下要生成1到36之间的随机数,所以您决定最简单的方法是投掷两个公平的6面骰子。你得到了这个:

     1    2    3    4    5    6
  -----------------------------
1|   1    2    3    4    5    6
2|   2    4    6    8   10   12
3|   3    6    9   12   15   18
4|   4    8   12   16   20   24   
5|   5   10   15   20   25   30
6|   6   12   18   24   30   36

所以我们有36个数字,但并不是所有数字都得到了公平的表示,有些数字根本没有出现。靠近中心对角线(左下角到右上角)的数字将以最高频率出现。

描述骰子之间不公平分布的相同原则同样适用于0.0和1.0之间的浮点数。