我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
当前回答
大多数这种分布发生是因为你必须限制或规范随机数。
我们将其标准化为全部为正,符合范围,甚至符合指定变量类型的内存大小限制。
换句话说,因为我们必须将随机调用限制在0和X之间(X是变量的大小限制),所以我们将有一组介于0和X的“随机”数。
现在,当你将随机数与另一个随机数相加时,总和将介于0和2X之间。。。这会使值偏离边缘点(当两个随机数在较大范围内时,将两个小数字相加和将两个大数字相加的概率非常小)。
想象一下这样一个例子,你有一个接近于零的数字,你将它与另一个随机数相加,它肯定会变大,远离0(这对于大数字是正确的,因为随机函数不可能两次返回两个大数字(接近于X的数字)。
现在,如果你用负数和正数设置随机方法(跨越零轴),情况将不再如此。
例如,假设RandomReal({-x,x},50000,.01),那么你会得到负数和正数的偶数分布,如果你将随机数相加,它们将保持其“随机性”。
现在我不确定Random()*Random(()从负到正的跨度会发生什么。。。这将是一个有趣的图表。。。但我现在得回去写代码了-P
其他回答
关于“随机性”的一些事情是反直觉的。
假设rand()的平面分布,下面将得到非平面分布:
高偏差:sqrt(rand(范围^2))中间偏差峰值:(rand(range)+rand(range))/2低:偏差:范围-sqrt(rand(范围^2))
有很多其他方法可以创建特定的偏置曲线。我对rand()*rand(()做了一个快速测试,它得到了一个非常非线性的分布。
很容易证明两个随机数之和不一定是随机的。假设你有一个6面骰子。每个数字有1/6的机会出现。现在假设你有2个骰子,并将结果相加。这些总数的分布不是1/12。为什么?因为某些数字比其他数字更多。它们有多个分区。例如,数字2仅是1+1的和,但7可以由3+4、4+3或5+2等组成,因此它出现的机会更大。
因此,在本例中,对随机函数应用变换(在这种情况下为加法)不会使其更随机,或必然保持随机性。在上述骰子的情况下,分布偏向于7,因此随机性较小。
只是一个澄清
尽管每当你试图发现伪随机变量或其乘法的随机性时,前面的答案都是正确的,但你应该知道,虽然random()通常是均匀分布的,但random(*random)却不是。
实例
这是通过伪随机变量模拟的均匀随机分布样本:
BarChart[BinCounts[RandomReal[{0, 1}, 50000], 0.01]]
这是两个随机变量相乘后得到的分布:
BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] *
RandomReal[{0, 1}, 50000], {50000}], 0.01]]
所以,两者都是“随机”的,但它们的分布是非常不同的。
另一个例子
当2*Random()均匀分布时:
BarChart[BinCounts[2 * RandomReal[{0, 1}, 50000], 0.01]]
随机()+随机()不是!
BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] +
RandomReal[{0, 1}, 50000], {50000}], 0.01]]
中心极限定理
中心极限定理指出,随着项的增加,Random()的和趋于正态分布。
只需四个术语即可获得:
BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000] +
Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000],
{50000}],
0.01]]
在这里,通过将1、2、4、6、10和20个均匀分布的随机变量相加,可以看到从均匀分布到正态分布的道路:
Edit
几个学分
感谢Thomas Ahle在评论中指出,最后两张图片中显示的概率分布称为Irwin Hall分布
感谢Heike出色的撕裂功能
浮动随机数通常基于一种算法,该算法产生一个介于零和一定范围之间的整数。因此,通过使用rand()*rand((),您实际上是在说int_rand()*int_rand()/rand_max ^2-这意味着您排除了任何素数/rand_max^2。
这显著改变了随机分布。
rand()在大多数系统中都是均匀分布的,如果正确播种,很难预测。除非你有特殊的理由对其进行数学运算(例如,将分布成形为所需的曲线),否则使用该方法。
这里有一个简单的答案。考虑垄断。你掷两个六面骰子(对于喜欢游戏符号的人来说是2d6),然后求和。最常见的结果是7,因为有6种可能的方式可以掷7(1,6,5,3,44,3,5,2和6,1)。而2只能在1,1上滚动。很容易看出,掷1d6和掷1d12是不同的,即使范围相同(忽略1d12上可以得到1,点保持不变)。将结果相乘而不是相加会以类似的方式扭曲它们,因为大多数结果都位于范围的中间。如果您试图减少异常值,这是一个好方法,但它无助于使分布均匀。
(奇怪的是,它也会增加低掷。假设你的随机性从0开始,你会看到一个峰值在0,因为它会将其他掷骰变成0。考虑两个介于0和1(包括0和1)之间的随机数,然后相乘。如果其中一个结果为0,则无论其他结果如何,整个结果都将变为0。从中得到1的唯一方法是两卷都是1。在实践中,这可能无关紧要,但这会形成一个奇怪的图形。)