我如何确定两条直线是否相交,如果相交,在x,y点处?


当前回答

我将Kris的答案移植到JavaScript。在尝试了许多不同的答案后,他给出了正确的观点。我以为我要疯了,因为我没有得到我需要的分数。

function getLineLineCollision(p0, p1, p2, p3) {
    var s1, s2;
    s1 = {x: p1.x - p0.x, y: p1.y - p0.y};
    s2 = {x: p3.x - p2.x, y: p3.y - p2.y};

    var s10_x = p1.x - p0.x;
    var s10_y = p1.y - p0.y;
    var s32_x = p3.x - p2.x;
    var s32_y = p3.y - p2.y;

    var denom = s10_x * s32_y - s32_x * s10_y;

    if(denom == 0) {
        return false;
    }

    var denom_positive = denom > 0;

    var s02_x = p0.x - p2.x;
    var s02_y = p0.y - p2.y;

    var s_numer = s10_x * s02_y - s10_y * s02_x;

    if((s_numer < 0) == denom_positive) {
        return false;
    }

    var t_numer = s32_x * s02_y - s32_y * s02_x;

    if((t_numer < 0) == denom_positive) {
        return false;
    }

    if((s_numer > denom) == denom_positive || (t_numer > denom) == denom_positive) {
        return false;
    }

    var t = t_numer / denom;

    var p = {x: p0.x + (t * s10_x), y: p0.y + (t * s10_y)};
    return p;
}

其他回答

我试过其中一些答案,但它们对我不起作用(对不起伙计们);在网上搜索之后,我找到了这个。

对他的代码做了一点修改,我现在有了这个函数,它将返回交点,如果没有找到交点,它将返回- 1,1。

    Public Function intercetion(ByVal ax As Integer, ByVal ay As Integer, ByVal bx As Integer, ByVal by As Integer, ByVal cx As Integer, ByVal cy As Integer, ByVal dx As Integer, ByVal dy As Integer) As Point
    '//  Determines the intersection point of the line segment defined by points A and B
    '//  with the line segment defined by points C and D.
    '//
    '//  Returns YES if the intersection point was found, and stores that point in X,Y.
    '//  Returns NO if there is no determinable intersection point, in which case X,Y will
    '//  be unmodified.

    Dim distAB, theCos, theSin, newX, ABpos As Double

    '//  Fail if either line segment is zero-length.
    If ax = bx And ay = by Or cx = dx And cy = dy Then Return New Point(-1, -1)

    '//  Fail if the segments share an end-point.
    If ax = cx And ay = cy Or bx = cx And by = cy Or ax = dx And ay = dy Or bx = dx And by = dy Then Return New Point(-1, -1)

    '//  (1) Translate the system so that point A is on the origin.
    bx -= ax
    by -= ay
    cx -= ax
    cy -= ay
    dx -= ax
    dy -= ay

    '//  Discover the length of segment A-B.
    distAB = Math.Sqrt(bx * bx + by * by)

    '//  (2) Rotate the system so that point B is on the positive X axis.
    theCos = bx / distAB
    theSin = by / distAB
    newX = cx * theCos + cy * theSin
    cy = cy * theCos - cx * theSin
    cx = newX
    newX = dx * theCos + dy * theSin
    dy = dy * theCos - dx * theSin
    dx = newX

    '//  Fail if segment C-D doesn't cross line A-B.
    If cy < 0 And dy < 0 Or cy >= 0 And dy >= 0 Then Return New Point(-1, -1)

    '//  (3) Discover the position of the intersection point along line A-B.
    ABpos = dx + (cx - dx) * dy / (dy - cy)

    '//  Fail if segment C-D crosses line A-B outside of segment A-B.
    If ABpos < 0 Or ABpos > distAB Then Return New Point(-1, -1)

    '//  (4) Apply the discovered position to line A-B in the original coordinate system.
    '*X=Ax+ABpos*theCos
    '*Y=Ay+ABpos*theSin

    '//  Success.
    Return New Point(ax + ABpos * theCos, ay + ABpos * theSin)
End Function

如果矩形的每条边都是一条线段,并且用户绘制的部分也是一条线段,那么您只需检查用户绘制的线段是否与四条边线段相交。这应该是一个相当简单的练习,给定每个段的起点和终点。

只是想提一下,一个很好的解释和明确的解决方案可以在数字食谱系列中找到。我有这本书的第三版,答案在1117页21.4节。另一种不同命名的解决方案可以在玛丽娜·加夫里洛娃(Marina Gavrilova)的论文中找到。在我看来,她的解决办法要简单一些。

我的实现如下:

bool NuGeometry::IsBetween(const double& x0, const double& x, const double& x1){
   return (x >= x0) && (x <= x1);
}

bool NuGeometry::FindIntersection(const double& x0, const double& y0, 
     const double& x1, const double& y1,
     const double& a0, const double& b0, 
     const double& a1, const double& b1, 
     double& xy, double& ab) {
   // four endpoints are x0, y0 & x1,y1 & a0,b0 & a1,b1
   // returned values xy and ab are the fractional distance along xy and ab
   // and are only defined when the result is true

   bool partial = false;
   double denom = (b0 - b1) * (x0 - x1) - (y0 - y1) * (a0 - a1);
   if (denom == 0) {
      xy = -1;
      ab = -1;
   } else {
      xy = (a0 * (y1 - b1) + a1 * (b0 - y1) + x1 * (b1 - b0)) / denom;
      partial = NuGeometry::IsBetween(0, xy, 1);
      if (partial) {
         // no point calculating this unless xy is between 0 & 1
         ab = (y1 * (x0 - a1) + b1 * (x1 - x0) + y0 * (a1 - x1)) / denom; 
      }
   }
   if ( partial && NuGeometry::IsBetween(0, ab, 1)) {
      ab = 1-ab;
      xy = 1-xy;
      return true;
   }  else return false;
}

上面有很多解决方案,但我认为下面的解决方案很简单,很容易理解。

矢量AB和矢量CD相交当且仅当

端点a和b在线段CD的两边。 端点c和d在线段AB的对边。

更具体地说,a和b在线段CD的对面当且仅当两个三元组中有一个是逆时针顺序的。

Intersect(a, b, c, d)
 if CCW(a, c, d) == CCW(b, c, d)
    return false;
 else if CCW(a, b, c) == CCW(a, b, d)
    return false;
 else
    return true;

这里的CCW代表逆时针,根据点的方向返回真/假。

来源:http://compgeom.cs.uiuc.edu/~jeffe/teaching/373/notes/x06-sweepline.pdf 第二页

问题可以简化成这样一个问题:从A到B和从C到D的两条直线相交吗?然后你可以问它四次(在直线和矩形的四条边之间)。

这是做这个的矢量数学。假设A到B的直线就是问题中的直线C到D的直线是其中一条矩形直线。我的表示法是Ax是A的x坐标Cy是c的y坐标“*”表示点积,例如A*B = Ax*Bx + Ay*By。

E = B-A = ( Bx-Ax, By-Ay )
F = D-C = ( Dx-Cx, Dy-Cy ) 
P = ( -Ey, Ex )
h = ( (A-C) * P ) / ( F * P )

h是键。如果h在0和1之间,两条线相交,否则不相交。如果F*P为零,当然不能进行计算,但在这种情况下,直线是平行的,因此只有在明显的情况下才相交。

交点是C + F*h。

更多的乐趣:

如果h恰好等于0或1,两条直线的端点相交。你可以认为这是一个“交集”,也可以认为不是。

具体来说,h是直线长度乘以多少才能恰好与另一条直线相交。

因此,如果h<0,这意味着矩形线在给定直线的“后面”(“方向”是“从A到B”),如果h>1,矩形线在给定直线的“前面”。

推导:

A和C是指向直线起点的向量;E和F是由A和C端点组成的直线。

对于平面上任意两条不平行线,必须恰好有一对标量g和h,使得这个方程成立:

A + E*g = C + F*h

为什么?因为两条不平行线必须相交,这意味着你可以将这两条线按一定比例缩放并相互接触。

(起初,这看起来像一个有两个未知数的方程!但当你考虑到这是一个二维矢量方程时,它就不是,这意味着这是一对x和y的方程)

我们必须消去其中一个变量。一个简单的方法是使E项为零。要做到这一点,用一个向量对方程两边做点积这个向量与E点乘到0,我把上面的向量称为P,我做了E的明显变换。

你现在有:

A*P = C*P + F*P*h
(A-C)*P = (F*P)*h
( (A-C)*P ) / (F*P) = h