我如何确定两条直线是否相交,如果相交,在x,y点处?


当前回答

FWIW,下面的函数(在C中)既检测线的交点,又确定交点。这是基于Andre LeMothe的“Tricks of the Windows Game Programming Gurus”中的一个算法。这与其他答案(例如Gareth的答案)中的一些算法并没有什么不同。然后LeMothe使用克莱默法则(不要问我)来解这些方程。

我可以证明它在我的小行星克隆中起作用,并且似乎正确地处理了Elemental, Dan和Wodzu在其他答案中描述的边缘情况。它也可能比KingNestor发布的代码快,因为它都是乘法和除法,没有平方根!

我想这里有一些除以0的可能性,尽管在我的例子中这不是问题。很容易修改以避免崩溃。

// Returns 1 if the lines intersect, otherwise 0. In addition, if the lines 
// intersect the intersection point may be stored in the floats i_x and i_y.
char get_line_intersection(float p0_x, float p0_y, float p1_x, float p1_y, 
    float p2_x, float p2_y, float p3_x, float p3_y, float *i_x, float *i_y)
{
    float s1_x, s1_y, s2_x, s2_y;
    s1_x = p1_x - p0_x;     s1_y = p1_y - p0_y;
    s2_x = p3_x - p2_x;     s2_y = p3_y - p2_y;

    float s, t;
    s = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / (-s2_x * s1_y + s1_x * s2_y);
    t = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / (-s2_x * s1_y + s1_x * s2_y);

    if (s >= 0 && s <= 1 && t >= 0 && t <= 1)
    {
        // Collision detected
        if (i_x != NULL)
            *i_x = p0_x + (t * s1_x);
        if (i_y != NULL)
            *i_y = p0_y + (t * s1_y);
        return 1;
    }

    return 0; // No collision
}

顺便说一句,我必须说,在LeMothe的书中,虽然他显然得到了正确的算法,但他展示的具体示例插入了错误的数字,并且计算错误。例如:

(4 * (4-1) + 12 * (7-1))/(17 * 4 + 12 * 10) = 844/0.88 = 0.44

这让我困惑了好几个小时。:(

其他回答

我已经尝试实现上述Jason所描述的算法;不幸的是,虽然在调试数学工作,我发现许多情况下,它不起作用。

例如,考虑点A(10,10) B(20,20) C(10,1) D(1,10) h=。5然而,通过检查可以清楚地看到,这些部分彼此一点也不接近。

将其绘制成图可以清楚地看出,0 < h < 1条件仅表明如果存在截距点,则截距点将位于CD上,而不告诉我们该点是否位于AB上。 为了确保有一个交叉点,你必须对变量g进行对称计算,拦截的要求是: 0 < g < 1 AND 0 < h < 1

问题C:如何检测两条线段是否相交?

我也搜索过同样的话题,但我对答案并不满意。所以我写了一篇文章,非常详细地解释了如何检查两条线段是否与大量图像相交。这是完整的(并经过测试的)java代码。

以下是这篇文章,截取了最重要的部分:

检查线段a是否与线段b相交的算法如下所示:

什么是边界框?下面是两个线段的边界框:

如果两个边界框都有交点,则移动线段a,使其中一点在(0|0)处。现在你有了一条经过a定义的原点的直线,现在以同样的方式移动线段b,检查线段b的新点是否在直线a的不同两侧。如果是这样,则反过来检查。如果也是这样,线段相交。如果不相交,它们就不相交。

问题A:两条线段在哪里相交?

你知道两条线段a和b相交。如果你不知道,用我在C题中给你的工具检查一下。

现在你可以通过一些情况,并得到解决与七年级数学(见代码和交互示例)。

问题B:你如何检测两条线是否相交?

假设点A = (x1, y1)点B = (x2, y2) C = (x_3, y_3) D = (x_4, y_4) 第一行由AB定义(A != B),第二行由CD定义(C != D)。

function doLinesIntersect(AB, CD) {
    if (x1 == x2) {
        return !(x3 == x4 && x1 != x3);
    } else if (x3 == x4) {
        return true;
    } else {
        // Both lines are not parallel to the y-axis
        m1 = (y1-y2)/(x1-x2);
        m2 = (y3-y4)/(x3-x4);
        return m1 != m2;
    }
}

问题D:两条直线在哪里相交?

检查问题B,它们是否相交。

直线a和b由每条直线上的两个点定义。 你基本上可以用和问题A相同的逻辑。

许多答案把所有的计算都打包成一个函数。如果您需要计算直线斜率、y轴截距或x轴截距,以便在代码的其他地方使用,那么这些计算将是冗余的。我分离出了各自的函数,使用了明显的变量名,并注释了我的代码以使其更易于理解。我需要知道直线是否无限超出它们的端点,所以在JavaScript中:

http://jsfiddle.net/skibulk/evmqq00u/

var point_a = {x:0, y:10},
    point_b = {x:12, y:12},
    point_c = {x:10, y:0},
    point_d = {x:0, y:0},
    slope_ab = slope(point_a, point_b),
    slope_bc = slope(point_b, point_c),
    slope_cd = slope(point_c, point_d),
    slope_da = slope(point_d, point_a),
    yint_ab = y_intercept(point_a, slope_ab),
    yint_bc = y_intercept(point_b, slope_bc),
    yint_cd = y_intercept(point_c, slope_cd),
    yint_da = y_intercept(point_d, slope_da),
    xint_ab = x_intercept(point_a, slope_ab, yint_ab),
    xint_bc = x_intercept(point_b, slope_bc, yint_bc),
    xint_cd = x_intercept(point_c, slope_cd, yint_cd),
    xint_da = x_intercept(point_d, slope_da, yint_da),
    point_aa = intersect(slope_da, yint_da, xint_da, slope_ab, yint_ab, xint_ab),
    point_bb = intersect(slope_ab, yint_ab, xint_ab, slope_bc, yint_bc, xint_bc),
    point_cc = intersect(slope_bc, yint_bc, xint_bc, slope_cd, yint_cd, xint_cd),
    point_dd = intersect(slope_cd, yint_cd, xint_cd, slope_da, yint_da, xint_da);

console.log(point_a, point_b, point_c, point_d);
console.log(slope_ab, slope_bc, slope_cd, slope_da);
console.log(yint_ab, yint_bc, yint_cd, yint_da);
console.log(xint_ab, xint_bc, xint_cd, xint_da);
console.log(point_aa, point_bb, point_cc, point_dd);

function slope(point_a, point_b) {
  var i = (point_b.y - point_a.y) / (point_b.x - point_a.x);
  if (i === -Infinity) return Infinity;
  if (i === -0) return 0;
  return i;
}

function y_intercept(point, slope) {
    // Horizontal Line
    if (slope == 0) return point.y;
  // Vertical Line
    if (slope == Infinity)
  {
    // THE Y-Axis
    if (point.x == 0) return Infinity;
    // No Intercept
    return null;
  }
  // Angled Line
  return point.y - (slope * point.x);
}

function x_intercept(point, slope, yint) {
    // Vertical Line
    if (slope == Infinity) return point.x;
  // Horizontal Line
    if (slope == 0)
  {
    // THE X-Axis
    if (point.y == 0) return Infinity;
    // No Intercept
    return null;
  }
  // Angled Line
  return -yint / slope;
}

// Intersection of two infinite lines
function intersect(slope_a, yint_a, xint_a, slope_b, yint_b, xint_b) {
  if (slope_a == slope_b)
  {
    // Equal Lines
    if (yint_a == yint_b && xint_a == xint_b) return Infinity;
    // Parallel Lines
    return null;
  }
  // First Line Vertical
    if (slope_a == Infinity)
  {
    return {
        x: xint_a,
      y: (slope_b * xint_a) + yint_b
    };
  }
  // Second Line Vertical
    if (slope_b == Infinity)
  {
    return {
        x: xint_b,
      y: (slope_a * xint_b) + yint_a
    };
  }
  // Not Equal, Not Parallel, Not Vertical
  var i = (yint_b - yint_a) / (slope_a - slope_b);
  return {
    x: i,
    y: (slope_a * i) + yint_a
  };
}

下面是一个基本的c#线段实现,并有相应的交点检测代码。它需要一个名为Vector2f的2D向量/点结构,不过你可以用任何其他具有X/Y属性的类型替换它。如果更适合你的需要,你也可以用double替换float。

这段代码用于我的. net物理库Boing。

public struct LineSegment2f
{
    public Vector2f From { get; }
    public Vector2f To { get; }

    public LineSegment2f(Vector2f @from, Vector2f to)
    {
        From = @from;
        To = to;
    }

    public Vector2f Delta => new Vector2f(To.X - From.X, To.Y - From.Y);

    /// <summary>
    /// Attempt to intersect two line segments.
    /// </summary>
    /// <remarks>
    /// Even if the line segments do not intersect, <paramref name="t"/> and <paramref name="u"/> will be set.
    /// If the lines are parallel, <paramref name="t"/> and <paramref name="u"/> are set to <see cref="float.NaN"/>.
    /// </remarks>
    /// <param name="other">The line to attempt intersection of this line with.</param>
    /// <param name="intersectionPoint">The point of intersection if within the line segments, or empty..</param>
    /// <param name="t">The distance along this line at which intersection would occur, or NaN if lines are collinear/parallel.</param>
    /// <param name="u">The distance along the other line at which intersection would occur, or NaN if lines are collinear/parallel.</param>
    /// <returns><c>true</c> if the line segments intersect, otherwise <c>false</c>.</returns>
    public bool TryIntersect(LineSegment2f other, out Vector2f intersectionPoint, out float t, out float u)
    {
        var p = From;
        var q = other.From;
        var r = Delta;
        var s = other.Delta;

        // t = (q − p) × s / (r × s)
        // u = (q − p) × r / (r × s)

        var denom = Fake2DCross(r, s);

        if (denom == 0)
        {
            // lines are collinear or parallel
            t = float.NaN;
            u = float.NaN;
            intersectionPoint = default(Vector2f);
            return false;
        }

        var tNumer = Fake2DCross(q - p, s);
        var uNumer = Fake2DCross(q - p, r);

        t = tNumer / denom;
        u = uNumer / denom;

        if (t < 0 || t > 1 || u < 0 || u > 1)
        {
            // line segments do not intersect within their ranges
            intersectionPoint = default(Vector2f);
            return false;
        }

        intersectionPoint = p + r * t;
        return true;
    }

    private static float Fake2DCross(Vector2f a, Vector2f b)
    {
        return a.X * b.Y - a.Y * b.X;
    }
}

如果矩形的每条边都是一条线段,并且用户绘制的部分也是一条线段,那么您只需检查用户绘制的线段是否与四条边线段相交。这应该是一个相当简单的练习,给定每个段的起点和终点。