我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
另一种方法是将状态保持在一位,并在负数的情况下翻转它,注意二进制表示。。。限制为2^29
整数ffn(整数n){
n = n ^ (1 << 30); //flip the bit
if (n>0)// if negative then there's a two's complement
{
if (n & (1<<30))
{
return n;
}
else
{
return -n;
}
}
else
{
if (n & (1<<30))
{
return -n;
}
else
{
return n;
}
}
}
其他回答
const unsigned long Magic = 0x8000000;
unsigned long f(unsigned long n)
{
if(n > Magic )
{
return Magic - n;
}
return n + Magic;
}
0~2^31
int f(int x){
if (x < 0)
return x;
return ~x+1; //two's complement
}
int f(int n) {
return ((n>0)? -1 : 1) * abs(n);
}
JavaScript单行:
function f(n) { return ((f.f = !f.f) * 2 - 1) * n; }
容易的:
function f($n) {
if ($n%2 == 0) return ($n+1)*-1;
else return ($n-1);
}