我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

C函数:

int f(int n) /* Treats numbers in the range 0XC0000000 to 0X3FFFFFFF as valid to
                generate f(f(x)) equal to -x. If n is within this range, it will
                project n outside the range. If n is outside the range, it will
                return the opposite of the number whose image is n. */
{
    return n ? n > 0 ? n <= 0X3FFFFFFF ? 0X3FFFFFFF + n : 0X3FFFFFFF - n :\
           n >= 0XC0000000 ? 0XC0000000 + n : 0XC0000000 - n : 0;
}

Ideone测试和下载链接

其他回答

C#重载:

string f(int i) {
  return i.ToString();
}

int f(string s) {
  return Int32.Parse(s) * -1;
}

Or

object f(object o) {
  if (o.ToString.StartsWith("s"))
    return Int32.Parse(s.Substring(1)) * -1;
  return "s" + i.ToString();
}
void f(int x)
{
     Console.WriteLine(string.Format("f(f({0})) == -{0}",x));
}

抱歉,伙计们。。。这太诱人了;)

我想我会先不看别人的答案就试试这个:

#include <stdio.h>
#include <limits.h>
#include <stdlib.h>

int f(int n) {
    if(n > 0) {  
        if(n % 2)
            return -(++n);
        else {
            return (--n);

        }
    }
    else {
        if(n % 2)
            return -(--n);
        else {
            return (++n);

        }
    }
}

int main(int argc, char* argv[]) {
    int n;
    for(n = INT_MIN; n < INT_MAX; n++) {
        int N = f(f(n));

        if(N != -n) {
            fprintf(stderr, "FAIL! %i != %i\n", N, -n);
        }
    }
    n = INT_MAX;
    int N = f(f(n));
    if(N != -n) {
        fprintf(stderr, "FAIL! n = %i\n", n);
    }
    return 0;
}

输出:[无]

这个问题并没有说明函数f的输入类型和返回值必须是什么(至少不是你给出的方式)。。。

…只是当n是32位整数时,f(f(n))=-n

那么,怎么样

Int64 f(Int64 n)
{
    return(n > Int32.MaxValue ? 
        -(n - 4L * Int32.MaxValue):
        n + 4L * Int32.MaxValue);
}

如果n是32位整数,则语句f(f(n))==-n将为真。

显然,这种方法可以扩展到更大范围的数字。。。

本质上,函数必须将可用范围划分为大小为4的循环,其中-n位于n循环的另一端。但是,0必须是大小为1的循环的一部分,否则0->x->0->x!=-x.因为0是单独的,所以在我们的范围内必须有3个其他值(其大小是4的倍数)不在具有4个元素的正确循环中。

我选择这些额外的奇怪值为MIN_INT、MAX_INT和MIN_INT+1。此外,MIN_INT+1将正确映射到MAX_INT,但会被卡在那里而不能映射回来。我认为这是最好的妥协,因为它有一个很好的特性,即只有极端值不能正常工作。此外,这意味着它将适用于所有BigInt。

int f(int n):
    if n == 0 or n == MIN_INT or n == MAX_INT: return n
    return ((Math.abs(n) mod 2) * 2 - 1) * n + Math.sign(n)