我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
创建许多解的一种方法是注意,如果我们将整数划分为两个集合S和R
那么我们可以如下创建f:
如果x在R中,则f(x)=g(x)
如果x在S中,则f(x)=-invg(x)
其中invg(g(x))=x,所以invg是g的逆函数。
上面提到的第一个解决方案是分区R=偶数,R=奇数,g(x)=x+1。
我们可以取任意两个无限集合T,P s.T T+U=整数集合,取s=T+(-T),R=U+(-U)。
然后-S=S和-R=R通过它们的定义,我们可以将g取为从S到R的任何1-1对应关系,这必须存在,因为这两个集合都是无限的和可数的。
因此,这将为我们提供许多解决方案,但并非所有解决方案都可以编程,因为它们不会被有限地定义。
例如:
R=可被3整除的数字,S=不可被3除的数字。
然后我们取g(6r)=3r+1,g(6r+3)=3r+2。
其他回答
看起来很简单。
<script type="text/javascript">
function f(n){
if (typeof n === "string") {
return parseInt(n, 10)
}
return (-n).toString(10);
}
alert(f(f(1)));
</script>
在C中,
int
f(int n) {
static int r = 0;
if (r == 1) {r--; return -1 * n; };
r++;
return n;
}
知道这是为了什么语言会有帮助。我错过了什么吗?许多“解决方案”似乎过于复杂,坦率地说,并非如此工作(当我读到问题时)。
创建许多解的一种方法是注意,如果我们将整数划分为两个集合S和R
那么我们可以如下创建f:
如果x在R中,则f(x)=g(x)
如果x在S中,则f(x)=-invg(x)
其中invg(g(x))=x,所以invg是g的逆函数。
上面提到的第一个解决方案是分区R=偶数,R=奇数,g(x)=x+1。
我们可以取任意两个无限集合T,P s.T T+U=整数集合,取s=T+(-T),R=U+(-U)。
然后-S=S和-R=R通过它们的定义,我们可以将g取为从S到R的任何1-1对应关系,这必须存在,因为这两个集合都是无限的和可数的。
因此,这将为我们提供许多解决方案,但并非所有解决方案都可以编程,因为它们不会被有限地定义。
例如:
R=可被3整除的数字,S=不可被3除的数字。
然后我们取g(6r)=3r+1,g(6r+3)=3r+2。
我希望你改变2个最高有效位。
00.... => 01.... => 10.....
01.... => 10.... => 11.....
10.... => 11.... => 00.....
11.... => 00.... => 01.....
正如你所看到的,这只是一个补充,省去了进位。
我是怎么得到答案的?我的第一个想法就是需要对称。4转回到我开始的地方。起初我想,这是20比特的格雷码。然后我觉得标准二进制就足够了。
作为一名数学家,我想分享我对这个有趣问题的看法。我认为我有最有效的解决方案。
如果我没记错的话,只需翻转第一位,就可以将有符号的32位整数取反。例如,如果n=1001 1101 1110 1011 1110 0000 1110 1010,则-n=0001 1101 11101 1011 11100 0000 1110 010。
那么,我们如何定义一个函数f,它接受一个带符号的32位整数,并返回另一个有符号的32位数整数,该函数的属性是:接受两次f与翻转第一位相同?
让我重新表述这个问题,而不提整数之类的算术概念。
我们如何定义一个函数f,它接受长度为32的一系列0和1,并返回长度相同的一系列零和1,同时具有两次接受f与翻转第一位相同的性质?
观察:如果你能回答32位情况的上述问题,那么你也可以回答64位情况、100位情况等。你只需将f应用于前32位。
现在,如果你能回答2位案例的问题,哇!
是的,改变前2位就足够了。
这是伪代码
1. take n, which is a signed 32-bit integer.
2. swap the first bit and the second bit.
3. flip the first bit.
4. return the result.
备注:步骤2和步骤3可以概括为(a,b)-->(-b,a)。看起来很眼熟?这应该会让你想起平面的90度旋转以及乘以-1的平方根。
如果我只是单独展示了伪代码,而没有冗长的前奏,那么它看起来就像脱口而出的兔子,我想解释一下我是如何得到解决方案的。