我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
这个是Python中的。适用于n的所有负值:
f = abs
其他回答
少于50个字符(C#)
int f(int n) { return (n <= 0) ? n : f(-n); }
或更容易阅读:
static int f(int n) {
if (n <= 0)
return n;
else
return f(-n);
}
要测试
static void Main(string[] args) {
for (int n = int.MinValue; n < int.MaxValue; n+=1) {
Console.Out.WriteLine("Value: " + n + " Result: " + f(f(n)));
}
}
它有效(假设我正确理解问题)
适用于n=[0..2^31-1]
int f(int n) {
if (n & (1 << 31)) // highest bit set?
return -(n & ~(1 << 31)); // return negative of original n
else
return n | (1 << 31); // return n with highest bit set
}
int f(const int n) {
static int last_n;
if (n == 0)
return 0;
else if (n == last_n)
return -n;
else
{
last_n = n;
return n;
}
}
哈克,但正确。
类似于python中的函数重载解决方案:
def f(number):
if type(number) != type([]):
return [].append(number)
else:
return -1*number[0]
备选方案:静态数据成员
用咖啡脚本打高尔夫:
f = (n)-> -n[0] or [n]