我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
C#重载:
string f(int i) {
return i.ToString();
}
int f(string s) {
return Int32.Parse(s) * -1;
}
Or
object f(object o) {
if (o.ToString.StartsWith("s"))
return Int32.Parse(s.Substring(1)) * -1;
return "s" + i.ToString();
}
其他回答
number f( number n)
{
static count(0);
if(count > 0) return -n;
return n;
}
f(n) = n
f(f(n)) = f(n) = -n
C++解决方案;
long long f(int n){return static_cast <long long> (n);}
int f(long long n){return -static_cast <int> (n);}
int n = 777;
assert(f(f(n)) == -n);
这里有一个证明,如果不使用额外信息(除了32位的int),那么对于所有数字,这样的函数都不可能存在:
我们必须使f(0)=0。(证明:假设f(0)=x,则f(x)=f(f(0))=-0=0。现在,-x=f(f(x))=f(0)=x,这意味着x=0。)
此外,对于任何x和y,假设f(x)=y。那么我们希望f(y)=-x。并且f(f(y))=-y=>f(-x)=-y。总结一下:如果f(x)=y,那么f(-x)=-y,f(y)=-x,f(-y)=x。
因此,我们需要将除0之外的所有整数分成4个集合,但我们有奇数个这样的整数;不仅如此,如果我们去掉没有正对应的整数,我们仍然有2(mod4)个数。
如果我们去掉剩下的2个最大数(通过abs值),我们可以得到函数:
int sign(int n)
{
if(n>0)
return 1;
else
return -1;
}
int f(int n)
{
if(n==0) return 0;
switch(abs(n)%2)
{
case 1:
return sign(n)*(abs(n)+1);
case 0:
return -sign(n)*(abs(n)-1);
}
}
当然,另一种选择是不遵守0,并获得我们删除的2个数字作为奖励。(但这只是一个愚蠢的假设。)
:D
boolean inner = true;
int f(int input) {
if(inner) {
inner = false;
return input;
} else {
inner = true;
return -input;
}
}
看起来很简单。
<script type="text/javascript">
function f(n){
if (typeof n === "string") {
return parseInt(n, 10)
}
return (-n).toString(10);
}
alert(f(f(1)));
</script>