我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
看起来很简单。
<script type="text/javascript">
function f(n){
if (typeof n === "string") {
return parseInt(n, 10)
}
return (-n).toString(10);
}
alert(f(f(1)));
</script>
其他回答
使用循环置换方法来实现这一点。
-b a b-a
a b-a-b
在微不足道的情况下f(0)返回0
对不起,我的电话回答很粗糙,28日后我将发布完整版本(现在正在检查…)简单地说,假设f(n)是一个循环排列,问题是如何构造它。
定义fk=f(f(f)f(…f(n))))(k fs)情况k=20.微不足道的情况f(0)返回01.分组,在情况k=2时,分组:{0} {1,2} {3,4} ... {n,n+1 |(n+1)%2=0}注意:我只使用Z+,因为结构不需要使用负数。2.构造排列:如果n%2=0,那么a=n-1 b=n如果n%2=1,则a=n b=n+1
这将产生相同的排列,因为n和f(n)在同一组中。
注意排列为P返回P(n)
对于k=2t,只做上面相同的事情,只做MOD k。对于k=2t-1,虽然该方法有效,但毫无意义,啊?(f(n)=-n正常)
int f(int n)
{
static long counter=0;
counter++;
if(counter%2==0)
return -n;
else
return n;
}
从来没有人说过f(x)必须是同一类型。
def f(x):
if type(x) == list:
return -x[0]
return [x]
f(2) => [2]
f(f(2)) => -2
上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。
红宝石:
def f( n )
return 0 unless n != 0
( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end
事实上,这些问题更多的是关于面试官与规范、设计、错误处理、边界案例以及为解决方案选择合适的环境等进行斗争,而不是关于实际解决方案。然而::)
这里的函数是围绕封闭的4循环思想编写的。如果函数f只允许落在有符号的32位整数上,那么上面的各种解决方案都将起作用,除了其他人指出的三个输入范围数。minint永远不会满足函数方程,因此如果这是一个输入,我们将引发一个异常。
在这里,我允许Python函数操作并返回元组或整数。任务规范承认这一点,它只指定函数的两个应用程序应该返回一个与原始对象相等的对象,如果它是int32。(我会询问有关规范的更多细节)
这使得我的轨道可以很好且对称,并且可以覆盖所有输入整数(minint除外)。我最初设想的循环是访问半整数值,但我不想陷入舍入错误。因此是元组表示。这是一种将复杂旋转作为元组隐藏的方式,而不使用复杂的算术机制。
注意,在调用之间不需要保留任何状态,但调用者确实需要允许返回值为元组或int。
def f(x) :
if isinstance(x, tuple) :
# return a number.
if x[0] != 0 :
raise ValueError # make sure the tuple is well formed.
else :
return ( -x[1] )
elif isinstance(x, int ) :
if x == int(-2**31 ):
# This value won't satisfy the functional relation in
# signed 2s complement 32 bit integers.
raise ValueError
else :
# send this integer to a tuple (representing ix)
return( (0,x) )
else :
# not an int or a tuple
raise TypeError
因此,将f应用于37两次得到-37,反之亦然:
>>> x = 37
>>> x = f(x)
>>> x
(0, 37)
>>> x = f(x)
>>> x
-37
>>> x = f(x)
>>> x
(0, -37)
>>> x = f(x)
>>> x
37
将f两次应用于零得到零:
>>> x=0
>>> x = f(x)
>>> x
(0, 0)
>>> x = f(x)
>>> x
0
我们处理一个问题没有解决方案的情况(在int32中):
>>> x = int( -2**31 )
>>> x = f(x)
Traceback (most recent call last):
File "<pyshell#110>", line 1, in <module>
x = f(x)
File "<pyshell#33>", line 13, in f
raise ValueError
ValueError
如果你认为函数通过模拟乘以i的90度旋转打破了“无复杂算术”规则,我们可以通过扭曲旋转来改变这一点。这里元组表示半整数,而不是复数。如果你在数字线上追踪轨道,你会得到满足给定函数关系的非相交循环。
f2: n -> (2 abs(n) +1, 2 sign( n) ) if n is int32, and not minint.
f2: (x, y) -> sign(y) * (x-1) /2 (provided y is \pm 2 and x is not more than 2maxint+1
练习:通过修改f来实现这个f2。还有其他解决方案,例如,中间着落点是有理数而不是半整数。有一个分数模块可能很有用。你需要一个符号函数。
这个练习让我真正体会到了动态类型语言的乐趣。我在C中看不到这样的解决方案。