我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。
红宝石:
def f( n )
return 0 unless n != 0
( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end
其他回答
嗯,我既不是数学,也不是编程高手,但这不是很容易吗?
int f(int i) {
static bool b;
if (b) {
b = !b;
return i;
} else {
b = !b;
return -i;
}
}
用大小正值和负值INT_MIN、INT_MAX进行测试,似乎可以。。。如果这是一个问题,可以使线程安全,但这不是任务的一部分。
或者我错过了什么?
你没说他们期望什么样的语言。。。这是一个静态解决方案(Haskell)。这基本上是在搞乱两个最重要的比特:
f :: Int -> Int
f x | (testBit x 30 /= testBit x 31) = negate $ complementBit x 30
| otherwise = complementBit x 30
在动态语言(Python)中要容易得多。只需检查参数是否为数字X,并返回返回-X的lambda:
def f(x):
if isinstance(x,int):
return (lambda: -x)
else:
return x()
:D
boolean inner = true;
int f(int input) {
if(inner) {
inner = false;
return input;
} else {
inner = true;
return -input;
}
}
int f(int n)
{
static long counter=0;
counter++;
if(counter%2==0)
return -n;
else
return n;
}
我有另一个解决方案,它可以在一半时间内工作:
def f(x):
if random.randrange(0, 2):
return -x
return x