我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

我希望你改变2个最高有效位。

00.... => 01.... => 10.....

01.... => 10.... => 11.....

10.... => 11.... => 00.....

11.... => 00.... => 01.....

正如你所看到的,这只是一个补充,省去了进位。

我是怎么得到答案的?我的第一个想法就是需要对称。4转回到我开始的地方。起初我想,这是20比特的格雷码。然后我觉得标准二进制就足够了。

其他回答

这个怎么样(C语言):

int f(int n)
{
    static int t = 1;
    return (t = t ? 0 : 1) ? -n : n;
}

刚刚试过,而且

f(f(1000)) 

回报-1000

f(f(-1000)) 

返回1000

这是正确的还是我没有抓住重点?

MIN_INT不会失败:

int f(n) { return n < 0 ? -abs(n + 1) : -(abs(n) + 1); }

我相信这符合所有要求。没有什么规定参数必须是32位有符号整数,只有你传入的值“n”是。

long long f(long long n)
{
    int high_int = n >> 32;
    int low_int  = n & 0xFFFFFFFF;

    if (high_int == 0) {
        return 0x100000000LL + low_int;
    } else {
        return -low_int;
    }
}
f(n) { return IsWholeNumber(n)? 1/n : -1/n }

适用于n=[0..2^31-1]

int f(int n) {
  if (n & (1 << 31)) // highest bit set?
    return -(n & ~(1 << 31)); // return negative of original n
  else
    return n | (1 << 31); // return n with highest bit set
}