我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

另一种利用短路的Javascript解决方案。

​function f(n) {return n.inv || {inv:-n}}

f(f(1)) => -1
f(f(-1)) => 1

其他回答

这个怎么样(C语言):

int f(int n)
{
    static int t = 1;
    return (t = t ? 0 : 1) ? -n : n;
}

刚刚试过,而且

f(f(1000)) 

回报-1000

f(f(-1000)) 

返回1000

这是正确的还是我没有抓住重点?

由于C++中的重载:

double f(int var)
{
 return double(var);
} 

int f(double var)
{
 return -int(var);
}

int main(){
int n(42);
std::cout<<f(f(n));
}

PHP,不使用全局变量:

function f($num) {
  static $mem;

  $answer = $num-$mem;

  if ($mem == 0) {
    $mem = $num*2;
  } else {
    $mem = 0;
  }

  return $answer;
}

适用于整数、浮点数和数字字符串!

只是意识到这会做一些不必要的工作,但是,不管怎样

int f(int x){
    if (x < 0)
        return x;
    return ~x+1; //two's complement
}

使用全局。。。但事实如此?

bool done = false
f(int n)
{
  int out = n;
  if(!done)
  {  
      out = n * -1;
      done = true;
   }
   return out;
}