我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
另一种利用短路的Javascript解决方案。
function f(n) {return n.inv || {inv:-n}}
f(f(1)) => -1
f(f(-1)) => 1
其他回答
这个怎么样(C语言):
int f(int n)
{
static int t = 1;
return (t = t ? 0 : 1) ? -n : n;
}
刚刚试过,而且
f(f(1000))
回报-1000
f(f(-1000))
返回1000
这是正确的还是我没有抓住重点?
由于C++中的重载:
double f(int var)
{
return double(var);
}
int f(double var)
{
return -int(var);
}
int main(){
int n(42);
std::cout<<f(f(n));
}
PHP,不使用全局变量:
function f($num) {
static $mem;
$answer = $num-$mem;
if ($mem == 0) {
$mem = $num*2;
} else {
$mem = 0;
}
return $answer;
}
适用于整数、浮点数和数字字符串!
只是意识到这会做一些不必要的工作,但是,不管怎样
int f(int x){
if (x < 0)
return x;
return ~x+1; //two's complement
}
使用全局。。。但事实如此?
bool done = false
f(int n)
{
int out = n;
if(!done)
{
out = n * -1;
done = true;
}
return out;
}