我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
我还没有看其他答案,我假设已经彻底讨论了按位技术。
我想我会在C++中想出一些邪恶的东西,希望不会上当受骗:
struct ImplicitlyConvertibleToInt
{
operator int () const { return 0; }
};
int f(const ImplicitlyConvertibleToInt &) { return 0; }
ImplicitlyConvertibleToInt f(int & n)
{
n = 0; // The problem specification didn't say n was const
return ImplicitlyConvertibleToInt();
}
整个ImplicitlyConvertableToInt类型和重载是必需的,因为临时变量不能绑定到非常量引用。
当然,现在来看它,f(n)是否在-n之前执行是不确定的。
对于这种程度的邪恶,也许一个更好的解决方案是:
struct ComparesTrueToInt
{
ComparesTrueToInt(int) { } // implicit construction from int
};
bool operator == (ComparesTrueToInt, int) const { return true; }
ComparesTrueToInt f(ComparesTrueToInt ct) { return ComparesTrueToInt(); }
其他回答
const unsigned long Magic = 0x8000000;
unsigned long f(unsigned long n)
{
if(n > Magic )
{
return Magic - n;
}
return n + Magic;
}
0~2^31
在Python中
f=lambda n:n[0]if type(n)is list else[-n]
另一种方法是将状态保持在一位,并在负数的情况下翻转它,注意二进制表示。。。限制为2^29
整数ffn(整数n){
n = n ^ (1 << 30); //flip the bit
if (n>0)// if negative then there's a two's complement
{
if (n & (1<<30))
{
return n;
}
else
{
return -n;
}
}
else
{
if (n & (1<<30))
{
return -n;
}
else
{
return n;
}
}
}
用咖啡脚本打高尔夫:
f = (n)-> -n[0] or [n]
我希望你改变2个最高有效位。
00.... => 01.... => 10.....
01.... => 10.... => 11.....
10.... => 11.... => 00.....
11.... => 00.... => 01.....
正如你所看到的,这只是一个补充,省去了进位。
我是怎么得到答案的?我的第一个想法就是需要对称。4转回到我开始的地方。起初我想,这是20比特的格雷码。然后我觉得标准二进制就足够了。