我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
这里有一个解决方案,其灵感来自于不能使用复数来解决这个问题的要求或声明。
乘以-1的平方根是一个想法,但似乎失败了,因为-1没有整数的平方根。但是,使用mathematica这样的程序可以得出如下公式
(18494364652+1)模(232-3)=0。
这几乎和平方根为-1一样好。函数的结果必须是有符号整数。因此,我将使用一个修改的模运算mods(x,n),它返回与x模n最接近0的整数y。只有极少数编程语言能够成功地进行模运算,但它很容易被定义。例如,在python中,它是:
def mods(x, n):
y = x % n
if y > n/2: y-= n
return y
使用上面的公式,问题现在可以解决为
def f(x):
return mods(x*1849436465, 2**32-3)
对于[-231-2231-2]范围内的所有整数,这满足f(f(x))=-x。f(x)的结果也在这个范围内,但当然计算需要64位整数。
其他回答
int f(int x){
if (x < 0)
return x;
return ~x+1; //two's complement
}
int f(int n)
{
static long counter=0;
counter++;
if(counter%2==0)
return -n;
else
return n;
}
有些类似,但我只是想写下我的第一个想法(用C++)
#include <vector>
vector<int>* f(int n)
{
returnVector = new vector<int>();
returnVector->push_back(n);
return returnVector;
}
int f(vector<int>* n) { return -(n->at(0)); }
仅使用重载使f(f(n))实际调用两个不同的函数
根据微软/谷歌的面试官通常在面试中提出的问题,我认为提问者指的是一种创新、轻量级、简单的解决方案,它将使用按位操作,而不是那些复杂的高级答案。
灵感来自@eipipuz的回答,我编写了这个C++函数(但没有运行它):
int32_t f(int32_t n){
int32_t temp = n & 00111111111111111111111111111111;
x = n >> 30;
x++;
x = x << 30;
return x | temp;
}
它将n的最左边的两位存储在x中,将x加1,然后再次将其替换为n的最左侧的两位。
如果我们继续以另一个f(n)作为参数n运行f(n,则最左边的两个位将如下旋转:
00 --> 01 --> 10 --> 11 --> 00 ...
请注意,最右边的30位不变。8位整数示例:
示例1:
>f(00001111)=01001111>f(01001111)=10001111[这是原始值的负值,00001111]
示例2:
>f(11101010)=00101010>f(00101010)=01101010[这是原始值11101010的负值]
这也是一个解决方案(但我们稍微改变了一下规则):
def f(n):
if isinstance(n,int):
return str(n)
else:
return -int(n)